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Abstract
The biggest threat to learning is to not engage in it. Crucially, sequential errors have been found to

be an important cause of quitting from learning. However, little is known about how students di↵er in
their sensitivity to errors. Using intensive longitudinal practicing data from over 200, 000 primary-school
students in a large-scale Online Learning Environment, we confirm previous findings that sequential errors
strongly increase the probability of quitting from learning. Second, we find large variability in this e↵ect,
ranging from no or small tendencies to quit to high sensitivities to quitting following sequential errors.
We validate these results in an independent dataset, and show that individual di↵erences are stable across
two arithmetic practice domains. Our results corroborate the theoretical notion that students di↵er in
their tolerance to failure and pinpoint a need to individualize how computer-adaptive systems intervene
after errors.

1 Introduction

The most e↵ective way to harm learning is to disengage from it. A long-standing and crucial societal issue

is keeping young children engaged in educational practice. Student engagement is a key contributor to

academic success [1; 2; 3; 4] which, in turn, promotes development. This study seeks to identify what factors

contribute to disengagement in educational practice. In doing so, it is possible to inform educational design

to maximize learning potential for all students.

Parallel to promoting engagement, there is a growing need for education to adapt to an increasingly

digitalized society. Technological developments in education, such as gamification and artificial intelligence,

have opened several avenues in the pursuit of improving educational outcomes for students (see e.g., [5; 6;

7; 8]). One example is adaptive education software: online learning environments (OLEs) designed with

the goal to personalize the learning level for each student. Although these platforms enable flexibility

and individualization in the learning process and in doing so can promote learning, they, too, can only be

successful under the crucial condition that students keep engaging with the platform.

The ultimate form of disengagement from learning is quitting, deliberately removing oneself from the

learning process before its intended end. While adult drop-out rates in Massive Open Online Courses

(MOOCs) have been widely studied and are known to be high (e.g., [9]), there is limited research investi-

gating what factors influence quitting at the primary school level. Here, OLEs are intended to complement
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traditional classroom instruction rather than replace it, thus drop-out, in the way it is studied within MOOCs,

does not exist. Therefore, quitting in this context is better understood as shorter-term disengagement, such

as a lack of persistence.

Task persistence, and other related measures, such as perseverance of e↵ort, self-e�cacy, and consci-

entiousness [10; 11] are considered crucial for student engagement and academic achievement [12]. These

traits have shown to improve with development. For instance, children’s ability to stay persistent on a

puzzle-solving task increases and becomes more consistent with age [13]. Apart from developmental mech-

anisms, persistence can fluctuate on a daily basis, both in adolescents [14], and younger children [13]. Such

daily variability suggests that there may be immediate external or internal factors which a↵ect children’s

tendencies to stay engaged in their educational practice.

One such factor is errors. While it is often argued that some error is necessary for e↵ective learning,

making repeated incorrect responses has been associated with less growth, and more disengagement, in

OLEs [15; 16]. Closely related to quitting, many students skip problems when they require more e↵ort

[17; 18], such as after an error has been made. One study has modeled quitting behavior in Prowise Learn

[19]. They estimated the probability of transitioning between three di↵erent states across time: (1) the

student is playing (persisting state), (2) the student quits an exercise prematurely but stays within the

learning environment (soft-quit state), or (3) the student quits an exercise prematurely and exits the learning

environment entirely (hard-quit state). Importantly, in correspondence with previous research [15; 16], they

found that the strongest predictor of both soft-quitting and hard-quitting was sequential errors. That is,

making two, three, or more than three errors in a row largely increased students’ risk of quitting both from

specific games and the learning environment for the day. Ultimately, making sequential errors may be an

important culprit in student quitting behavior.

Persevering in the face of consecutive failures requires that students possess a plethora of adaptive traits

that help them resist quitting (for an overarching review, see [20]), including self-regulated learning (SRL;

[21; 22]). Disengagement and e↵ort-avoidance caused by errors, in this context, may be signaling a lack of

self-regulation in the learner. Self-regulation is argued to be beneficial for success especially in the context

of academic obstacles, as it requires a degree of meta-cognitive skills which allow for the child to monitor

their performance while keeping their task goal in mind, and in doing so they can recognize when their

performance does not match the task goal (i.e. the task has failed; [23; 24; 25]).

One such meta-cognitive process is error monitoring, the ability to keep track of the outcomes of one’s

actions and optimally adjust subsequent behavior. Previous research has found variability in the degree to

which individuals are able to optimally monitor their errors [26], and lower error monitoring has been linked

with lower levels of conscientiousness and a lack of perseverance [27]. Other research has focused on how

individuals respond to errors. For example, adaptive post-error behavior, in the form of post-error slowing

(PES), has been shown to be related to increased performance in Prowise Learn [28]. Moreover, lower levels

of PES has been linked to attention deficit hyperactivity- [29] and anxiety disorders [30]. Other work, such as
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that on learned helplessness [31], fixed- and growth mindset [32; 33; 34] point to variability in the the degree

of e↵ort that students are willing to exert when faced with challenging tasks. Taken together, it is likely

that there are variances in the ability to adaptively detect and respond to errors, giving rise to di↵erences

in the e↵ect that sequential errors have on quitting across students.

1.1 The current study

The current study aims to replicate previous findings that sequential errors predict quitting in OLEs [19],

and extend these findings by accounting for individual variability in the e↵ect of sequential errors on quitting.

We expect the probability of transitioning between persisting, soft-quit, and hard-quit states to be similar

to the previous study, and expect the same pattern of results for the relative importance of 1, 2, 3, and more

than 3 sequential errors on all state transitions.

Next, we estimate the degree of individual di↵erences in the relationship between sequential errors and

quitting. This is arguably the next step for improving the design of OLEs that promise an individualized

learning experience. First, we examine whether the e↵ect of sequential errors on quitting di↵ers depending

on age, di�culty level, speed of errors, and whether students play outside or inside school hours. Second, we

look at how the tendency to quit following errors fluctuates across time and whether it depends on the amount

of exposure to playing that a user has. Lastly, we fit a mixed-e↵ects logistic regression and examine how

the individual e↵ect of sequential errors on quitting fluctuates between users. Based on previous research,

we expect sequential errors to have an average e↵ect on quitting, with significant between-subject variance.

Some users may show a large tendency to quit following sequential errors, while others persist.

Besides between-subjects individual di↵erences, developmental science concerns within-subjects di↵er-

ences: how do individuals’ behaviors di↵er across time and situations [35]? Such questions are crucial for

understanding the stability of individual di↵erences across contexts. If we find meaningful individual dif-

ferences in the e↵ect of sequential errors on quitting in the addition game, our last goal is to examine how

these individual di↵erences relate to the subtraction domain. Is an individual’s e↵ect of sequential errors

on quitting in the addition game similar in the subtraction game? Answering this question is a first step in

determining the stability of error-induced quitting across learning contexts.

2 Results

We included di↵erent subsets of Prowise Learn gameplay data for our respective aims in this project. Detailed

data selection criteria and analysis procedures are described in the methods section.

2.1 Sequential errors predict quitting

For the replication of [19], we included data from all domains in the Learning Sea and Math Garden envi-

ronments spanning the 2-month period between 2023-05-29 and 2023-07-30 from which users had played a
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total of at least 5 games. This resulted in a sample size of 24,859 users, across grades three (n = 4, 343),

four (n = 4, 816), five (n = 4, 770), six (n = 4, 304), seven (n = 3869), and eight (n = 2, 787).

Two di↵erent Multi-State Survival Models (MSSM) were fit to the data. First, we fit a constrained model,

estimating the rates of transitioning between persisting, soft-quit, and hard-quit states without controlling

for any extraneous variables. Second, we fit a covariate model, controlling for gender, grade, di�culty level,

speed of error, playing within or outside school hours, and sequential errors. Including covariates in the

model contributed to significantly better model fit, �2(44) = 1238246, p < .001. Similarly to [19], this model

provided evidence for the existence of quitting states across time. The rate of transitioning from a persisting

state to a hard-quit state was 0.0227, whereas the transition rate between a soft-quit state to a hard-quit

state was 0.0284. Thus, users are approximately 1.7 times more likely to transition into a hard-quit state

when they are in a soft-quit state compared to a persisting state. This is comparable to the results of [19],

who reported a rate of 2. All transition intensities can be found in Table 1.

Table 1: Transition Intensities for the Covariate MSSM

Estimate SE 95% CI

Persisting - Persisting -0.057 < .001 [�0.058;�0.056]
Persisting - Soft-Quit 0.241 0.002 [0.238; 0.245]
Soft-Quit - Persisting 0.034 <0.001 [0.034; 0.035]
Soft-Quit - Soft-Quit -0.280 0.002 [�0.283;�0.276]
Hard-Quit - Persisting 0.023 < .001 [0.022; 0.023]
Hard-Quit - Soft-Quit 0.038 0.001 [0.037; 0.040]

Note. 95% confidence intervals are computed using normal approximation methods, assuming normality of the
log e↵ect. MSSM = Multi-State Survival Model; SE = Standard Error.

The proportional hazards model revealed that sequential errors predict transitions into both soft-quit

and hard-quit states (Figure 1). The pattern of e↵ects of 1, 2, 3, and >3 sequential errors was similar to [19],

with particularly strong similarities for persisting to soft-quit transitions across both learning applications.

For transitions into soft-quitting within the Math Garden, the e↵ect of 1, 2, 3, and >3 sequential errors

all fell within the previously reported confidence bounds. For Language Sea games, the e↵ect of 1 and 3

sequential errors did, whereas the e↵ect of 2 and >3 did not. For transitions into hard-quitting, the e↵ects

of 1 and 2 sequential errors was replicated across both learning applications, whereas the e↵ects of 3 and >3

sequential errors were lower compared to the previous findings. The e↵ects of 3 and >3 sequential errors in

the persisting to hard-quit transition were similar to the e↵ects of 1 and 2 sequential errors, which deviates

from both the previous findings and the pattern of e↵ects seen for the persisting to soft-quit transitions.

2.2 Individual di↵erences in Error-Induced Quitting

For the analysis of individual di↵erences, we used log data from users playing the addition game within the

Math Garden environment in Prowise Learn. This game exists of arithmetic items suited for students with

a large range of addition ability. The data spanned a three-year period between 2021-09-01 and 2023-07-01,
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Figure 1: Hazard ratios derived from the Multi-State Survival Model, presented on a logarithmic scale.
Each hazard ratio represents the relative increase or decrease in quits for each covariate value compared to
its reference category. Lines represent the 95% confidence interval. MSSM = Multi-State Survival Model.
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resulting in more than 25 million responses from 255,568 unique users. Given the size of our data, we took a

data driven approach, exploring model parameters in a training dataset (n = 105, 864), and later validating

our models on an untouched testing dataset (n = 105, 733). Grade, gender, ability, and choice of di�culty

level were equal distributed across both datasets (Supplementary Materials C1).

Because this analysis looks only at data from one game in the system, it is not possible to di↵erentiate

between hard- and soft-quitting. Thus, the outcome variable quitting used hereafter is defined as when a user

stops the addition game prematurely (i.e., before completing 10 items), regardless of whether they continued

interacting with the application or not. Across both datasets, about 31% of sessions ended prematurely.

2.2.1 Error-induced quitting di↵ers across age, response time, di�culty, and time of day

To estimate the general probability of switching between a persisting to a quitting state in the addition

game, three 2-state Simple Markov Models were defined. First, a model estimating baseline transition rates

without the influence of any covariates. Second, we model the likelihood of state transitions, while controlling

for the same covariates as done in the MSSM model. Lastly, we fit a model including an interaction term

between sequential errors and all other covariates. That is, we estimated how the e↵ect of quitting following

sequential errors di↵ers across the levels of each covariate (grade, di�culty level, response time, playing

during or outside school hours). These three models are hereafter referred to as the constrained, covariate,

and interaction model, respectively.

The interaction model provided the best fit to the data (AICbaseline = 29044256; AICcovariate = 2371495;

AICinteraction = 2364586). Results of this model are displayed in figure 2. A likelihood ratio test showed best

model fit for the interaction model (�2(35) = 6956, p < .001.). In this model, users transitioned between

a persisting to quitting state at an instantaneous rate of 0.018. 1, 2, 3, and >3 sequential errors had a

considerable e↵ect on the likelihood of transitioning from a persisting to quitting state, and there were small

e↵ects of di�culty, fast vs. slow errors, and playing outside vs. inside school hours (figure 2, left).

All interaction e↵ects were significant (Figure 2, right). The interaction e↵ect between sequential errors

and response time revealed that users were less likely to quit after making 1 error with a fast response time,

but more likely to quit after 2, 3, and >3 sequential errors when they have a fast, compared to a slow,

response time. Further, users playing on the easy di�culty level were more likely to quit following 2, 3, and

>3 sequential errors, while users playing on the di�cult level were less likely to quit following all levels of

sequential errors. E↵ects of grade reveal that younger users were less likely to quit after 1 error, but more

likely to quit after 2 sequential errors, compared to older users, with no di↵erence in quitting for 3 or > 3

sequential errors across grades. Lastly, playing during school hours led to less quitting following 2, 3, and

> 3 sequential errors, compared to playing outside school hours.

The Markov models were subsequently fit to the testing data to validate the aforementioned results.

Results in the testing dataset were highly similar to those found in the training dataset, with the interaction

model showing best model fit, AIC = 2375501. Fixed and interaction e↵ects were also similar. All Markov
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Figure 2: Hazard ratios for the main (left) and interaction (right) e↵ects derived from the 2-state markov
model on the addition game. Each hazard ratio for the interaction e↵ects represents the relative increase
or decrease in the likelihood of transitioning into a quitting state for each covariate across each level of
sequential error. For example, the transitioning into a quitting state when making more than 3 sequential
errors is approximately 1.35 times more likely if the response was fast, compared to slow. Lines represent
the 95% confidence interval.

modeling results on the testing data are reported in Supplementary Materials B.

2.2.2 Error-induced quitting reduces over time

Within Prowise Learn, there is a large variance in the amount of sessions that players have played. This also

means that some users encounter errors more often than others. To explore whether the amount of sessions a

user has played a↵ects their tendency to quit, we looked at average quitting rate across sessions. Specifically,

we compared the probability of quitting after a correct compared to an incorrect response, across session

count (how many sessions in the addition game that the user has played at that point in time), separated

across di�culty levels and experience (denoting whether a user had played the game before the start of

data collection or not). This exploratory analysis revealed two important trends in our data: (1) post-error

quitting decreases with more playing experience, while post-correct quitting does not, (2) post-error quitting

is more likely while playing easy and di�culty levels, but not post-correct quitting. These longitudinal e↵ects

are displayed in Figure 3.

2.2.3 Error-induced quitting di↵ers across individuals

Finally, to examine the variability in the e↵ect of sequential errors on quitting across users in the OLE,

we performed a mixed-e↵ects logistic regression. Importantly, in order to have enough data to estimate
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Figure 3: Post-error vs. post-correct quit probabilities, separated across di�culty levels and new vs.
existing users. A user was classified as a new user if their first experience in the addition game occurred
during the period of data collection, and existing user if they had played the addition game before the start
of data collection. Ribbons around the estimates represent a 95% confidence interval.

individual e↵ects, we excluded users who had played less than 50 sessions and made less than 10 quits in

total. This resulted in a sample of 3,998 users.

Fixed e↵ects estimates We fit three separate mixed-e↵ects models. In all models, we used subjects as the

grouping variable and modeled the fixed e↵ect of sequential errors on quitting. In this case, sequential errors

was treated as a continuous variable, ranging from 0 to 10. The first model estimated quitting predicted by

sequential errors and included a random intercept term allowing for the baseline quit rates (at 0 sequential

errors) to vary across users. Second, we modeled quitting predicted by sequential errors, including a random

intercept and a random slope, allowing the e↵ect of sequential errors on quitting to vary across intercepts

and individual users. Lastly, we fit a model including a random intercept, random slope, and the fixed e↵ects

of user ability and grade, thus allowing these two variables to be controlled for. 1

The third model provided the best fit to the data (Table 2). There was a significant fixed e↵ect of

sequential errors (� = 0.81; SE = 0.001; p < .001) on quitting. This is equivalent to an odds ratio (OR)

of about 2.25, meaning that for every sequential error committed, the risk of quitting increases by about

2.25. There was a significant e↵ect of user ability (� = �0.10;SE = 0.01; p < .001;OR = 0.90) and grade

(� = �0.05;SE = 0.004; p < .001;OR = 0.95) , meaning that the risk of quitting is higher for users

with lower ability ratings and in lower grades. Correlation estimates between fixed e↵ects can be found in

1In light of the previous results that tendency to quit di↵ers across di�culty levels, we aimed to fit a model also including
di�culty level as a covariate, but due to our stringent data selection criteria, each di�culty group was too small for the model
to fit adequately.
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Supplementary Materials C; Table C3.

Random e↵ects estimates Adding random variance in the e↵ect of sequential errors on quitting resulted

in better model fit. Additionally, intra-class correlations (ICC) demonstrated that this model accounted for

about 68% of between-subject variance in baseline quitting rates, and 56% of between-subject variance in

the e↵ect of sequential errors on quitting. The variance estimate for the intercept was 0.39 (� = 0.62) and for

the e↵ect of sequential errors was 0.14 (� = 0.37). There was a weak negative correlation between random

intercept and slope estimates (r = �.10), implying that users who quit less in the absence of errors, are

slightly more likely to quit when faced with errors.

Results on Test Data The testing dataset consisted of 4,091 users. Despite random sampling to training

and testing datasets, and identical data selection across both datasets, model fitting procedures on the testing

data had poorer convergence rates compared to the training data. Nevertheless, BIC values and a likelihood

ratio test provided evidence that the model including fixed e↵ects of sequential errors, user ability, and grade,

a random intercept and random e↵ect of sequential errors on quit probability fit the data best, similar to

the training data (Table 2). This model accounted for 69% of inter-individual variance in baseline quitting

rates and 56% of inter-individual variance in e↵ects of sequential errors on quitting. BIC values were also

similar across datasets. Full model comparison results and estimated model parameters in the testing data

are reported in Supplementary Materials C.

Table 2: GLMER Model Fit Indices

Training Data Testing Data

Model AIC BIC Log-Likelihood AIC BIC Log-Likelihood

1. 1047301 1047340 -523647 1041610 1041649 -520802
2. 1032731 1032796 -516360 1027581 1027646 -513785
3. 1013950 1014041 -506968 1027433 1027525 -513710

Note. All models include a fixed intercept, and fixed e↵ect of sequential errors on probability of quitting. Random
e↵ects are modeled across individual users. Models 1, 2, and 3 are ordered by increasing complexity: Model 1
= Model with random intercept; Model 2 = Model with random intercept and random slope; Model 3 = Model
with random intercept, random slopes, and covariates grade and user ability ratings.

2.2.4 Individual di↵erences are stable across two arithmetic domains

The aforementioned findings reveal individual di↵erences in the extent to which quitting rates of users playing

the addition game within Prowise Learn are a↵ected by sequential errors. In this final step of the analysis,

we sought to examine the robustness of these findings by extracting individual e↵ects of sequential errors on

quitting from the same users, but in a di↵erent domain, namely, subtraction. Here, we included users who

played at least 50 sessions and made a minimum of 10 quits in the both the addition and subtraction game

within the given data collection period; n = 1765.

9



Addition

−6

−4

−2

0

2

Ef
fe

ct
 E

st
im

at
e

Subtraction

Intercept

−6

−4

−2

0

2

−1

0

1

2

3

Ef
fe

ct
 E

st
im

at
e

Slope

−1

0

1

2

3

Intercept
Slope

0 1 2 3 4

−5 −4 −3 −2 −1 0

−4

−2

0

−1

0

1

2

3

Random Effects Addition Data

R
an

do
m

 E
ffe

ct
s 

Su
bt

ra
ct

io
n 

D
at

a

Figure 4: Left: Baseline quitting rates (intercept) and e↵ects of sequential errors on quitting (slope) for
300 randomly sampled users, across both the addition and subtraction domain. Datapoints are ordered
from lowest to highest e↵ect estimate in both graphs. Horizontal lines denote the fixed e↵ect. Vertical lines
represent the 95% confidence interval of each user’s e↵ect, estimated from repeated resampling (n = 200)
from the posterior distribution of the random e↵ects. The REsim function from the package merTools (v.
0.6.2, [36]) in R was used to achieve this. The points of users whose e↵ect estimate is not significantly
di↵erent from the average main e↵ect has a more transparent color. Right: Scatterplots representing the
correlation between random e↵ects in the addition and subtraction game. The shaded region represents the
95% confidence interval.

Similar to the addition game, there was a significant main e↵ect of sequential errors (� = 0.74; SE =

0.007; p < .001) , user ability (� = �0.07; SE = 0.011; p < .001) , and grade (� = �0.07; SE = 0.004;

p < .001) . The random variance estimate for the intercept was 0.39 (� = 0.62) and for the e↵ect of sequential

errors was 0.12 (� = 0.35). Importantly, to estimate the stability of individual di↵erences across the two

domains, we computed correlations between the random intercepts and random slopes extracted from users’

data for both the subtraction and addition games. Figure 4 (left) shows individual e↵ect estimates in both

domains from 300 randomly sampled users. There was a strong correlation between users’ individual e↵ects

of sequential errors on quitting (random slopes) in the addition and the subtraction game (r = .64; p < .001).

Likewise, there was a strong correlation between users’ baseline quitting rates in both domains (r = .80;

p < .001; Figure 4; right).
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3 Discussion

The increasing popularity of online adaptive learning software, coupled with a growing awareness that one

size does not fit all in learning, demands research that pinpoints what elements make OLEs e↵ective, and

for whom that is the case. In this study, we have combined both urgencies by investigating predictors of

quitting, and the variability thereof, in a large-scale OLE. Results support previous findings that sequential

errors predict quitting and add to these findings that errors do not a↵ect quitting equally across students.

The replication was performed by fitting a continuous time MSSM to estimate the likelihood of transition-

ing between persisting, soft-quit and hard-quit states in the arithmetic- and language-learning environments.

Similarly to [19], the associated risk of transitioning to a hard-quit state is higher when in a soft-quit state

compared to a persisting state. This reinforces the previous notion of quitting as a state-dependent process.

Importantly, we investigated how the associated risk of quitting changes given the presence of 1, 2, 3, or

more than 3 sequential errors. The majority of these e↵ects fall within the confidence bounds of the previous

paper. As expected, we also see a clear resemblance in the pattern of e↵ects of all covariates on soft-quitting

when comparing with the results of [19].

Interestingly, some of the current e↵ects are lower than those presented in the previous study. This is

particularly the case for the associated risks of transitioning between persisting and hard-quit states following

sequential errors. It could be that di↵erences in the time period from which the current data was collected

had an e↵ect on the estimated e↵ect sizes. The current data collection period took place in June and July,

whereas the previous one took place in March and April. In the Netherlands, primary school students

have a summer break from school starting at the beginning of July. Consequently, we saw a large drop

in data around this time. It is possible that the lower amount of students that practice within the OLE

in July are qualitatively di↵erent from the average player, which may have deflated our e↵ect estimates.

Notwithstanding, our pattern of results closely match those of the previous study and contribute to our

understanding of predictors of quitting in online learning.

The e↵ect of sequential errors on quitting is further strengthened by our results in the larger addition

and subtraction datasets. The 2-state Markov model demonstrated large increases in the likelihood of

transitioning into a quitting state following 1, 2, 3, and >3 sequential errors. Similarly, the fixed e↵ect

of quitting following sequential errors in the mixed-e↵ect logistic regression indicated that the likelihood of

quitting more than doubles for each sequential error a student makes. Taken together, this is robust evidence

supporting the role of sequential errors on students’ average propensity to quit, demonstrated across di↵erent

time periods, learning domains, and statistical methods. These findings emphasize the need for continued

use of interventions to reduce quitting in OLEs, such as that designed by [19]. Intervention research will also

help in establishing causality in the relationship between errors and quitting.

Despite the fact, our findings make clear that such interventions might not be equally e↵ective for all

students. By allowing for e↵ects to di↵er between users, we find considerable inter-individual variability,

both in average quitting rates and in the tendency to quit following errors. These e↵ects are stable across
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addition and subtraction domains. This is an important first finding highlighting the need to take individual

di↵erences in online learning engagement into account. In particular, there are two major implications of

these results to the design of interventions on errors in OLEs. First, interventions should be adapted to the

individual player. It is possible that users that are less likely to quit following errors will be less impacted by

interventions which, for example, reduce the di�culty of an item following an error. Such a persistent user

might in contrast be motivated to continue trying on a similar level following a mistake and therefore be

discouraged at the presentation of an easier item. On the other hand, a user who is highly reactive to making

multiple errors may benefit from a stronger intervention. Second, our findings that individual di↵erences are

stable across both addition and subtraction games imply that a user’s individual e↵ect of sequential errors

on quitting in the addition game can be used to tailor their individual error intervention in the subtraction

game. Future research should investigate the e↵ectiveness of such cross-domain interventions.

Our findings indirectly support previous work demonstrating that children vary in their ability to monitor

and react to their errors. We see that some children show very large tendencies to quit after encountering

errors, which may reflect poor error monitoring, fixed mindset, or a helplessness approach to learning, and

vice versa. One main limitation, however, is that the mechanisms underlying individual di↵erences in error-

induced quitting are left unstudied. Thus, no clear conclusions can be drawn for the relation between

di↵erences in quitting behavior and either cognitive nor behavioral motivational di↵erences. Future work

should investigate potential moderators in the relationship between sequential errors and quitting, such as

PES or mindset.

The current study has also identified other variables which impact the tendency to quit after errors.

Compared to users playing on the default medium level, users playing on a di�cult level were less likely to

quit, and users playing on an easy level were more likely to quit, following errors. In line with the expectancy-

value theory of motivation [37; 38; 39], users playing on an easier level may have a higher expectancy of

success, and thus have a higher level of surprise when making several mistakes in a row. This leads to a

stronger emotional reaction when encountering the error, in turn leading to a greater likelihood of quitting

the task. In contrast, the value component of the expectancy-value theory posits that individuals are more

motivated when a task is perceived as valuable or important. This may reflect users that choose to play on

a more di�cult level, who are quitting less despite encountering errors. The ability to measure reactions to

errors in varying degrees of di�culty presents a unique potential to further explore how users’ beliefs about

their own competency, and the structure of their environment, impacts their persistence. This opens up

for a wide array of research questions revolved around whether there exists a “sweet-spot” in di�culty in

which a task is neither too easy nor too di�cult which allows the learner to stay engaged and motivated,

and whether this di↵ers between learners.

Second, looking at error-induced quitting over sessions revealed that the average probability of quitting

reduces with more sessions played. Thus, it may be fruitful to intervene on error-induced quitting early in

the playing process, and decrease the strength of intervention as users gain more experience. These results
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suggest that there is an experience-related build-up of tolerance to errors, which should be studied in more

detail in the future.

“The value of within-person approaches in educational psychology cannot be emphasised enough” ([35],

p. 83). In this study, we were able to pinpoint within-person e↵ects of errors on quitting across two

arithmetic domains. Previous research has also brought forward within-subjects di↵erences in children and

adolescents’ fluctuations in task persistence over time [14; 40]. In addition, [41] demonstrate moment-to-

moment variability in children’s performance in an online math practice environment, as well as reliable

inter-individual di↵erences in these intra-individual variabilities. Notably, students with higher degrees of

moment-to-moment fluctuations in performance had lower average math performance. These findings bring

to light a new path within individual di↵erences research, wherein longitudinal within-subjects fluctuations

in tolerance to errors, and their relations to overall cognitive performance, should be established.

There are several limitations and potentials for future research. First, the addition and subtraction

domains are very close in relation to each other. Recent research has shown that motivation likely di↵ers

across broader learning domains, such as between mathematics and language [42], which our replication

results also allude to. Thus, it is possible that the stability of individual di↵erences in error-induced quitting

does not generalize across broader learning domains. Investigating how stable individual error-induced

quitting e↵ects are over domains with varying degrees of di↵erence would have large implications for whether

persistence in online learning is domain- or user-specific.

Next, our stringent selection of users limits our inferences to a population of children that are inherently

more persistent, and children that begin interacting in the system but quit before having played 50 sessions

are left unstudied. In regards to disengagement and drop-out, the behavioral patterns of these students,

and whether they di↵er from students who stay in the system on for a longer time, may be particularly

interesting to investigate. Therefore, future research should find ways to model this quitting behavior, for

example by defining quitting on a longer-term basis, as opposed to a session level. Relatedly, our study has

only focused on the e↵ects of errors on exiting a session, but has not studied whether it a↵ects the time

taken before starting a new session. Such findings would further elucidate the dynamics of student quitting

behavior. Nevertheless, we found reliable individual di↵erences in a narrow sub-population of users in the

OLE, a strong finding in and of itself.

The e�cacy of online learning platforms hinge on their ability to retain their users. Moreover, behavioral

patterns in giving up from learning, and the role of errors therein, provide a novel way to study children’s

motivational variability in an increasingly digital world. This study elucidates individual di↵erences in

perseverance and paves way for future research on interventions to keep children motivated to learn.
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4 Methods

4.1 Online Learning Environment

We use online learning data from the application Prowise Learn, developed by [43]. In this OLE, children

can choose to enter the Math Garden (for mathematics practice), Language Sea (for language practice), or

Words and Birds (for English language learning). Figure 5 shows a screenshot of the addition game in the

math garden environment. The program utilizes computer-adaptive practice (CAP), meaning that it selects

the appropriate di�culty level of the item given each player’s estimated ability rating. The algorithm is a

combination of the Elo algorithm (for further information see [5]) and the explicit scoring rule proposed by

[44]. Importantly, the games are time-limited and rating increases when a student is accurate and fast, and

decreases if the student performs incorrectly or slowly. The use of CAP allows us to interpret findings in the

context of students that are practicing within their optimal learning level.

Each game that the user can choose to start consists of 10 items. The time given to respond to an item

is shown on the screen in the form of coins, which decrease by one coin per second, until the time is up or

an answer is made. If the item is answered correctly, the user receives the number of coins that are left. If

the user gives an incorrect response, a fixed number of coins are subtracted from their total. The next item

is selected according to the expected probability that the user will answer it correctly, based on the current

item di�culty and user ability rating. This probability can be manipulated by the di�culty level that the

user plays on, and can be 0.90 (easy), 0.75 (medium), or 0.60 (di�cult). The di�culty level is set at medium

as a default unless the player chooses otherwise. Apart from di�culty selection, the player can manipulate

whether they can see the disappearing coins at each item, and they can retrieve the answer for the item

by clicking a question mark. In the latter case, the player receives a null score, and the item is skipped.

Lastly, the player can continue to the next item or quit the game by clicking an exit button between the

presentation of items. If no choice is made, the game moves automatically to the next item.

4.2 Data

This work was approved by the Ethics Review Board of the Psychological Methods department at the Uni-

versity of Amsterdam (approval number 2022-PML-15260). Schools or families signing up for Prowise Learn

provide consent for their data’s scientific use. Agreements between Prowise Learn and individual schools

ensure that parents are informed about data usage and that participation is voluntary. Data from children

without parental consent were not included, and all data were anonymized before researchers accessed them.

Inclusion criteria. Users who show non-deliberate gameplay were excluded from all datasets, according

to the following criteria: (1) sessions where the game was started but exited immediately; (2) sessions with

long sequences of incorrect responses; or (3) sessions with three fast incorrect responses in a row (as detected

by the system, resulting in an automatic ending of a game). We also excluded users in grades 1 and 2, as
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Figure 5: A screenshot of the addition game in Prowise Learn.

most games are not suited for children in this age, thus they provide too little data.

Analysis. All data analyses were conducted using R Statistical Software (v4.3.2; [45]). Fitting procedures

for the Multi-State and Simple Markov Models were carried out using the msm package (v1.7, [46]). Mixed-

e↵ects models were fitted using the glmer function from the lme4 package (v.1.1.35.1, [47]).

4.3 The Multi-State Survival Model

The procedures outlined below match those specified in [19]. See Figure 6 for a schematic representation of

the MSSM. Survival models were originally developed for the modeling of disease progression in three states:

health, illness, and death. Here, we apply it to data from Prowise Learn and define three quitting states:

persisting (user is playing), soft-quitting, and hard-quitting. Hard-quitting is considered an absorbing state

because it cannot be left once entering (the student has logged out of the learning environment). The model

allows us to estimate the probability of transitioning between one state, h, at time t into another state, j,

at time t+�t.

The MSSM assumes that the probability of transitioning from one state to another is dependent on the

current state and time, regardless of the history of the system, and in doing so fulfills the Markov property.

This allows the probability of transitioning between states, P (t), to be defined by a state transition intensity

matrix, Q, in the form:

Q =

2

6664

�(q12 + q13 q12 q13

q21 �(q21 + q23) q23

0 0 0

3

7775

Another important characteristic of the model is that it allows the e↵ects of covariates, z(t), on transition
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State 1:
Persisting

State 2:
Soft-quit

State 3:
Hard-quit

(absorbing)

q21

q12

q23

q13

Figure 6: Schematic representation of the continuous Multi-State Survival Model. The model depicts the
transitions between each possible state in continuous time: the student is playing and then soft-quits (q12);
the student completes a full session after soft-quitting (q21); the student exits the OLE entirely following a
soft-quit (q23) or a completed session (q13).

intensities qhj to be estimated. This is done by calculating hazard ratios, which denote how much each

covariate increases or decreases the likelihood of a state transition. Hazard ratios are computed with the

proportional hazards model:

qhj(z(t)) = q
0
hj exp(�

>
(z(t)))

in which the baseline transition rate is modified by the exponentiated e↵ect of each covariate’s influence,

represented by the product of the covariate’s corresponding � parameter and its value.

The MSSM is fitted to the data using a maximum-likelihood algorithm. The individual likelihood of

transitioning from one state, Stj , to another state, Stj+1, for student i, is:

Li,j = pS(tj)S(tj+1)(tj+1 � tj)

This represents the entry of the transition matrix at the S(tj)th row and S(tj+1)th column at t = tj+1�tj .

Consequently, the full likelihood is the product of all Lij terms over all students and all transitions.

4.4 Measures

Quitting Quitting is operationalized in two ways. A soft-quit occurs when the user exits a game before

the session has ended (i.e., before completing 10 items), but stays within the learning environment. Second,

a hard-quit occurs when the user exits the game prematurely and leaves the application completely. In the

replication analysis, both of these operationalizations of quitting are utilized, as they are hypothesized to

16



be dependent on each other. Here, the MSSM is used to measure the probabilities of transitioning between

persisting and quitting states. For the analysis of individual di↵erences, no di↵erentiation is made between

soft-quitting or hard-quitting, rather, a quit is denoted when a user exits a game before the session has

ended.

Sequential Errors This variable denotes how many errors a student has made in a row, directly before

the current item. When the user makes a correct response, the variable is reset to 0. For the Multi-State

and 2-state Markov Models, the variable is discretized and can take on the values 0, 1, 2, 3, or >3. For the

mixed-e↵ect models, the variable is continuous and can take on any value between 0 (no error made) and 9,

which is the maximum amount of sequential errors possible before a game is complete.

4.4.1 Di�culty setting

We measure whether the student chooses to play on the easy medium, or di�cult setting.

Speed of responding The previous study and this replication included a covariate determining the speed

of errors. However, given that an error is contained in such a response, it is possibly that is is related to the

sequential error variable, giving rise to multicollinearity in the model. To avoid this in further analyses, we

include a response time variable, denoting whether a response was fast or slow, regardless of its correctness.

A response is considered fast if the response time is faster than the median response time, and slow if it is

slower than the median response time 2.

Playing inside or outside school hours Additionally, we measured whether students play during school

hours, between 07:00 and 15:00 on weekdays, or not. This is a binary variable and takes on the values 0

(inside school hours) or 1 (outside school hours).

User ability To estimate user ability, we extracted ability in a certain game, we extracted the last user

rating estimate (determined by the Elo Rating System and Explicit Scoring Rule, described above) for each

user within the relevant domain and data collection period.

5 Data Availability

Due to the private nature of children’s learning data, data are available from the corresponding author upon

reasonable request.

2Given that fast errors showed a significant e↵ect on quitting in the MSSM, we also fitted a model including the interaction
between sequential errors and response time in the 2-state model. Results are described in section 3.2.2.
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6 Code Availability

All code used for data analyses in this project is publicly available at https://github.com/ann1ejohansson/

three-strikes.git. All resources concerning the current work can also be accessed at https://ann1ejohansson.

github.io/three-strikes/.
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