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Abstract

The estimation of student ability is paramount in large-scale personalized learning. To this

end, state-of-the-art adaptive learning environments use item response theory (IRT). Previous

work in traditional learning assessment has demonstrated that unidimensional IRT models fall

short in adequately estimating ability when items on a test are skipped. In this study, we ex-

tend this work to online learning platforms. We analyze data from a large-scale online learning

platform used to practice Arithmetic and Language. Using the IRTree framework, we compare

the unidimensional model of accuracy to a multidimensional model which additionally accounts

for the decision to respond or skip a problem. We found support for problem-skipping as a non-

ignorable process: students that were more likely to problem-skip were more likely to make

erroneous responses. Further exploration revealed individual differences in the strategies in-

volved with problem-skipping. To ensure that learning analytic tools are supported by fair mea-

surement models, we suggest several ways to account for problem-skipping when estimating

student ability.
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1 Introduction

Accurately assessing and improving children’s educational performance relies on our ability to

effectively measure their cognitive processes during learning and testing. Over the years, the de-

velopment of the field of learning analytics (LA) has been imperative for understanding student

responding in education [40]. LA typically involves analyzing large datasets from digital learning

environments, where student abilities are inferred through measurement models. These models

often focus on accuracy as the primary latent trait driving performance. However, many online

learning platforms offer response options beyond simply giving the answer, such as requesting

hints or skipping questions (hereby referred to as problem-skipping). The latent traits underly-

ing problem-skipping remain unclear, and they are often either ignored or treated as incorrect in

traditional models. This study explores whether skipped responses represent a distinct cognitive

process, separate from accuracy, in estimating learner ability.

2 Related Work

Item response theory (IRT) models are commonly used measurement models for assessing stu-

dent ability in the context of educational practice and testing. In this section, we give a brief

overview of how the standard IRT models and an extension, in the form of IRT Tree models, are

formulated, and how alternative responses have been accounted for in previous work.

2.1 Classical IRT models

In the standard IRT model, student ability is assessed based on the likelihood of a correct re-

sponse, given specific properties of the current test item, and the student’s current ability. Com-

mon properties include item difficulty, which represents at what ability level the student has a 50%

chance of responding to the item correctly, and item discrimination, indicating how well the item

discriminates between students of different abilities. The 1-Parameter Logistic Model (1PL; also

referred to as a Rasch Model [33]) considers item difficulty, and a 2-Parameter Logistic Model

(2PL) considers both item difficulty and item discrimination. In this paper, we use extensions of

the 1PL model to account for hierarchical decision processes, and thus do not proceed further with
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explaining the 2PL model. In the 1PL model, the probability that a student with ability θ answers

item i correctly is given by the function:

P (Xi = 1 | θ) = 1

1 + e−(θ−bi)
(1)

where bi is the difficulty parameter for item i.

In classic IRT models, skipped responses are often ignored or treated as incorrect. The choice

to treat a response as missing and ignore it relies on the assumption that it is missing at random

(MAR), i.e., the process of skipping a response is entirely random. When the assumption of MAR

holds, the probability of the missing data pattern does not depend on the observed data, and the

latent trait of the missing data process is unrelated to the estimated parameter in the data, such

as the ability [34]. In such cases, the missing data is ignorable. Similarly, the choice to treat an

alternative response as incorrect relies on the assumption that the probability of making such a

response can be fully attributed to the estimated parameter in the data (for example, the process

of skipping a problem is the same as the process of making a problem incorrectly). However, if

in any case one of these assumptions are violated, that is, if the data is missing not at random

(MNAR), omitted or missed responses are not ignorable and it is necessary to account for the

missing data process in addition to the main parameters [26]

2.2 IRTree models

Previous work has demonstrated that ignoring missing responses in IRT approaches can lead

to bias on person- and item-parameter estimates [13, 28, 31, 18, 11]. In classical test theory,

it has been widely found that test-takers may exhibit undesirable response patterns which do

not reflect the trait that the scale aims to measure. For example, on a five-point Likert scale,

some respondents may consistently agree or disagree with the item by consistently choosing 1

or 5 (and ignoring 2 and 4), referred to as extreme response styles, and some may exhibit a

stronger tendency to choose the middle option (3; mid-scale responding). Failure to account for

individual differences in response patterns is problematic because it may bias the validity of the

trait measurement and other constructs to be estimated, particularly when the response style is

related to trait to be measured. Therefore, a range of research is dedicated to reliably identifying
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and controlling for response styles to produce test results which are as unbiased as possible. One

such way is to model the response process as a hierarchical decision tree, where the content and

the response format of the item are both assumed to contribute to the observed response [3, 8,

38]. Following the previous example, the respondent may choose whether to endorse the item

in any direction (mid-scale responding or not), and if they do, whether they agree or disagree.

IRTree models have been used successfully for capturing extreme response styles and mid-scale

responding on Likert-type response scales [4, 38].

IRTree models can also be used to model missing responses in an educational context. Here,

responses are often categorized as correct, incorrect, or missing (i.e., a student skipped the item),

and the problem-skipping process is modeled separately from accuracy (incorrect or correct). In

specific, the model assumes a two-stage process where, first, the item is responded to or not,

and second, the item is responded to correctly or incorrectly. This process can be visualized as a

tree-branching model with two nodes (Figure 1), and the response of person p on item i can be

coded as two binary variables, Y (1) and Y (2), where

Y (1) = { 1 if the person attempts item i0otherwise (2)

Y (2) = { 1 if the person solves item i correctly,0otherwise (3)

Each node in the tree model is modeled with a 1PL model [33]. Thus, the tree model combined

is a multidimensional IRT model, where the probability of the response of person p on item i being

in category m can be formulated as:

π(xpi = m | θp, βi) =
N∏

n=1

 exp
(
θ
(n)
p + β

(n)
i

)tmn

1 + exp
(
θ
(n)
p + β

(n)
i

)

qmn

(4)

Depending on where you are in the tree, the probability is computed as the product across all

internal nodes involved in the respondent’s path through the tree, leading to a specific response

category. The terms tmn and qmn comprise a mapping matrix and together decide whether a node

will contribute to the probability of category m. tmn determines whether an internal node n is

relevant for the probability calculation of response category m. It equals 1 if the node is relevant

4



to category m (i.e., contributes to the response), and 0 otherwise. qmn determines whether the

node n is active for the probability calculation of category m). When qmn = 1, the node will actively

contribute to the probability of category m, and when qmn = 0, the node will be ignored for that

category.

The main advantage with this modeling approach is that the unidimensionality of the decision

process can be formally tested [8]. The two-node branching model depicted in Figure 1 gives rise

to two latent traits on the person and item side respectively:

1. node 1: θ1p (individual propensity to skip an item) and β1
i (item skipping threshold), and

2. node 2: θ2p (individual ability) and β2
i (item difficulty).

Now, the correlation between θ1 and θ2, and β1 and β2 can be calculated. That is, how much do

omissions depend on respondents or on items? The unidimensional assumes that these correla-

tions are negligible, i.e., for individuals, problem-skipping and ability are the same, and the likeli-

hood for an item to be skipped is equal to its estimated difficulty. In Rubin’s [34] terms, the IRTree

model becomes a model for MNAR which can be tested against the 1PL model which assumes

MAR. If correlations between omission tendency and ability are not 1, and the tree model fits the

data better, there is evidence that the missing data is not ignorable and needs to be accounted for

in the estimation of student ability.

Previous work has found support for problem-skipping and ability as distinct processes in edu-

cational assessment data [29, 31, 11, 19, 18]. In a simulation study, Debeer et al. [11] found that

a 1PL model results in bias in person- and item-parameters when data is MNAR, and that mod-

eling the missingness mechanism with an IRTree model significantly reduces this bias. This was

especially the case for students who omit many responses. In a subsequent empirical study on

the PISA 2009 reading proficiency tests in Argentina, the authors found that students’ reading pro-

ficiency was negatively related to their skipping propensity, and that modeling reading proficiency

with a IRTree vs. 1PL model resulted in systematic differences in parameter estimation. The tree

model was the best fit to the data, and, consequently, they conclude that missing responses in edu-

cational achievement data should not be ignored. Okumura [29] found similar results for Japanese

students on the PISA 2009 reading proficiency tests. Similarly, Pohl et al. [31] compared a unidi-

mensional model with a multidimensional model accounting for missing propensity on reading and
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mathematical competence tests for German fifth grade students. They found that for both read-

ing and mathematics, lower-ability students omitted more responses than higher-ability students.

The unidimensional model was not suitable for estimating student ability, especially when omitted

responses were treated as incorrect. When missing responses were ignored, a unidimensional

model was sufficient to estimate student ability. Nevertheless, given the relationship between

problem-skipping and ability, the authors argued that the missing mechanism is nonignorable, and

should be accounted for in estimating student ability within the IRT framework.

2.3 Item omission in online learning

Aforementioned research on the relationship between omission tendencies and student ability

has focused on traditional pen-and-paper testing. However, online learning environments (OLEs)

introduce new dimensions to this relationship by offering response options that are not typically

available in standardized tests. These options include skipping a question entirely, requesting

hints, receiving partial answers, or accessing the full solution. Such features offer students greater

flexibility and may encourage different response styles. Despite this added complexity, many OLEs

rely on traditional IRT models to estimate student ability, and often ignore omitted responses or

treat them as incorrect.

A key distinction between pen-and-paper assessments and online learning practice is the in-

creased autonomy that students experience in OLEs. While standardized tests like PISA are

designed to be low-stakes, students may still perceive them as formal and make a concerted

effort to answer each question to the best of their ability. Additionally, these tests are typically

short-term, meaning that most students can sustain a consistent level of attention, motivation, and

effort throughout the test. In contrast, OLEs allow students to engage with content over multiple

sessions, and their motivation or willingness to engage deeply may vary across different log-in oc-

casions. Further, some students may learn to “game the system” [1] in online learning platforms,

finding response strategies that maximize reward at the cost of learning. Although students are

undoubtedly likely to show fluctuations in their motivation and effort throughout an achievement

test, the free-practice nature of OLEs invokes many different situational and individual factors that

influence a student’s propensity to problem-skip.
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On the other hand, when a student chooses to problem-skip in an OLE it is a deliberate act [35,

36], as opposed to in traditional settings where it can only be assumed that the student intentionally

omitted the answer. If one would assume that a student chooses to skip an item because they

know that they do not know the answer, it would be acceptable to treat the item omission as an

incorrect response, and the measurement model likely would not produce bias.

2.4 The current study

Given the unique conditions of OLEs on the learning process, it is important to measure problem-

skipping and its relation to student proficiency in this setting. The large-scale nature and richness

of data provided by OLEs offer a unique opportunity to investigate this in an approachable manner.

Previously, IRTrees have been successfully applied to online learning data by accounting for the

speed-accuracy trade off in ability estimation [7].

In this work, we estimate the relationship between problem-skipping and accuracy in a large-

scale adaptive educational software designed for primary school students to practice Arithmetic.

We fit different unidimensional and multidimensional IRT models and assess their ability to esti-

mate student ability in the presence or absence of a latent trait for problem-skipping. Our research

questions are as follows:

1. Are problem-skipping and accuracy distinguishable processes in online learning?

2. If so, what is the relationship between these two constructs?

3 Methods

3.1 Data

3.1.1 Online Learning Environment

We use data from the adaptive OLE Prowise Learn (previously known in the literature, and referred

to here as, Math Garden [23]). The learning platform was developed for Dutch primary school stu-

dents to study Math and Language. The platform currently consists of 65 games divided between

the learning environments Math Garden (for Arithmetic practice; 28 games), Language Sea (for
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Dutch language learning; 24 games), and Words and Birds (for English language learning; 13

games). It is currently being used by over 450 000 children across 4300 schools. Depending on

the difficulty of the task, the student can select one out of multiple answer options, or fill in the

number themselves. They can skip the item by clicking a question mark. Then, the correct answer

is shown and the student continues to the next item. While on the platform, children take care

of a virtual garden, where each game represents a different learning domain, and the amount

of practice is shown as the health of the plant. More information about the platform is available

at https://www.prowise.com/en/product/prowise-learn/the Prowise Learn Website. Research on

the adaptivity of the platform can be found in [23, 6, 5, 17]. The platform has also been used

for applied developmental and educational research, across topics such as skill development in

mathematics [30] and language [22], math anxiety [20, 21, 16], error-monitoring [10, 9], effort [36]

and problem-skipping [35].

In this work, we use data from the Math Garden game Series (Figure 2), wherein a student

is asked to fill in a missing number in a number sequence. This game is designed to test knowl-

edge of number sequences and relations. Each item that a student completes is given a score,

determined by an explicit scoring rule (Figure 3, Equation 5). This scoring rule is visualized to the

student in the form of coins: coins disappear for every second until the deadline (20 seconds). If

the item is answered correctly, the amount of coins remaining is awarded, whereas if the answer

is incorrect, the remaining amount of coins is lost. If the student skips the item or does not answer

in time, no change is made to their score.

Item difficulties and student abilities are estimated with the Elo Rating System (ERS). When

entering a learning game for the first time, a student is given a provisional ability rating θ (around

the mean of the existing students within the same grade level). For each item that the student

responds to, θ is updated according to the weighted difference between the accuracy and the

expected accuracy on the item. Simultaneously, the rating of the item (β) is updated:

θ̂p = θp +Kp(Sip − E(Sip)),

β̂i = βi +Ki(E(Sip)− Sip).

K is a scaling parameter which determines the weight that the difference between the observed

and expected score will have on the new ability estimate (for more information about the K-factor,

see [39]). The score of person p following their response x on item i is dictated by the difference
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between their response time t and the deadline d, scaled by a discrimination parameter α:

Sip = (2xip − 1)(αidi − αitip). (5)

This is the formalization of the explicit scoring rule (Figure 3). It is a so-called high speed, high

stakes (HSHS) scoring rule [27], which imposes a speed accuracy trade-off in response behavior.

In Math Garden, the discrimination parameter, αi, is equal to 1/d. In this way, the model maintains

a constant discrimination value across items, and thus the calculated expected score is equivalent

to a 1PL IRT model:

E(Sip) = aidi
e2aidi(θp−βi) + 1

e2aidi(θp−βi) − 1
− 1

θp − βi
. (6)

The ERS adaptively matches children to items according to their desired difficulty level, which

correspond to the probability of answering an item correctly. Difficulty levels are 60% (hard) 75%

(medium), or 90% (easy). Children play on the default medium setting unless they select other-

wise. For an in-depth explanation of how the ERS has been applied to Math Garden, see [23].

3.1.2 Inclusion criteria

To obtain data suitable for the IRT fitting procedure we selected a specific subset of data from the

Series game. First, we sampled data from the 2-year period between 01-09-2014 and 31-08-2016.

In recent years, changes have been made to the explicit scoring rule and the accessibility of the

question mark response in Math Garden. To ensure that these changes do not affect question

mark behavior in our analyses, we chose to look at data before this period of time. Next, for

identification of the IRTree model, we included only users who have made at least 20 question

mark responses. Lastly, the adaptive nature of the OLE means that user ability parameters are

continuously updated. This also implies that for each user, there are periods of stable (learning is

constant) and unstable (denoted by jumps or shifts in learning) measurements of user ability. In

order to control for possible effects of learning on question mark usage, we only included data from

periods where a user’s ability remained relatively stable. We defined a stable period as one where

the user’s ability rating stayed close to their average rating. Specifically, a stable period was when
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the user’s ability rating did not fluctuate more than 1 rating point above or below their average

rating. The average rating for each user was calculated by taking the 20% trimmed mean of all

their ability ratings, to prevent outliers from skewing the average. This criterion helps to minimize

the influence of learning (or sudden jumps in ability) on question mark usage. The length of each

obtained period of learning data varied between users, with the mode around 1–2 weeks and the

max up to 80 weeks.

On the item side, we selected items which had been played a minimum of 2000 times within the

selected data collection period. The final dataset consisted of 4110 respondents and 386 items.

3.2 Analyses

Comparing unidimensional and multidimensional linear response tree models allows to test whether

one underlying trait gives rise to the response categories on a test item [8]. Here, we compare

a unidimensional (1PL) model to IRTree models with varying parameter constraints to investigate

whether responses to items in the Series game rely solely on one latent person variable (ability)

or whether ability is distinguishable from problem-skipping. Because IRTree models are forms of

generalized linear mixed models (GLMM), the software package lme4 [2] is used to estimate them.

In all models, response is a binary variable denoting a decision (left or right) in the response tree.

Each response in the tree is modeled as a 1PL model. The response tree is formulated such that

node 1 represents the propensity to skip a problem, with 1 coded as a question mark response

and 0 coded as an attempt to solve the item. Node 2 represents the propensity to give an incorrect

response (difficulty), with 1 coded as an incorrect response and 0 coded as a correct response.

See Figure 1 and Equations 3 and 4 for the technical specifications of the IRTree models. We

compare the following models:

1. Fully estimated IRTree: A multidimensional linear response tree where response is predicted

by a random node effect of items and a random node effect of users. This model captures

item- and user-specific variation across nodes.

2. Item-constrained IRTree: A multidimensional linear response tree where response is pre-

dicted by a random intercept for items, and a random node effect of users, but without mod-

eling item-specific variation in nodes. This model captures variability in user behavior across
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nodes, but not item thresholds.

3. User-constrained IRTree: A multidimensional linear response tree where response is pre-

dicted by a random intercept for users, and a random node effect of items, but without mod-

eling user-specific variation in nodes. This model captures variability in item thresholds

across nodes, but not user behavior.

4. Fully constrained IRTree: A unidimensional random item model for linear response trees,

where both item- and user-level effects are modeled with random intercepts, but without

accounting for variation across nodes. Item omission and correctness are collapsed into the

same response process, making this conceptually equivalent to a 1PL model.

4 Results

4.1 Description of Problem-Skipping Behavior

On average, children skipped approximately 6% of items in the Series game. Upon exploring

problem-skipping behavior, we found several trends. First, unsurprisingly, the usage of the ques-

tion mark feature was used more by children playing on the hard level (M = 0.086, SD = 0.281),

compared to easy (M = 0.043, SD = 0.203) and medium (M = 0.050, SD = 0.218) levels. Addi-

tionally, there was a small increase in the overall use of question mark responses across grades

(0.061 (SD = 0.239) for Grade 3, 0.059 (SD = 0.237) for Grade 4, 0.062 (SD = 0.241) for Grade 5,

0.062 (SD = 0.241) for Grade 6, 0.063 (SD = 0.244) for Grade 7, and 0.067 (SD = 0.250) for Grade

8.). However, when looking at average question mark usage across grades and difficulty levels

simultaneously, this relationship changed, with stable proportions of problem-skipping for children

playing on the hard level, and a decreasing proportion of problem-skipping across grades for easy

and medium levels (Figure 4).

We also found differences with regards to at what point in time the question mark feature was

used. Figure 5 displays the probability of each response type (correct, incorrect, question mark)

across response times. Problem-skipping was much more likely to occur in the first five seconds

upon the presentation of an item, and very unlikely to occur after five seconds, though with a small

increase in probability upon nearing the response deadline at 20 seconds. This is in stark contrast
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to the probability of making a correct response, which quickly increased in the first five seconds

and slowly decreased leading up to the deadline. The probability of making an incorrect response

showed a small peak early in the response process, and slowly increased with increasing response

times. This figure also demonstrates that within the response times that are most common (where

the histogram bars are the highest), the probability of giving a question mark response is relatively

low.

Similarly, with increasing number of items played in the Series game, the probability of skipping

the problem decreased (Figure 6). This indicates that as users gain more understanding of how

to play the Series game, their problem-skipping decreases. This graph also demonstrates the

adaptivity of the system: as user ability estimates get more certain, the probability of making an

error and question mark response stabilizes.

4.2 Models of Problem-Skipping Behavior

To test whether problem-skipping is distinguishable from ability in the Series game, we compared

a fully estimated multidimensional response tree to a unidimensional response tree, and two ver-

sions of a multidimensional response tree where either random item estimates (item-constrained

IRTree) or random user estimates (user-constrained IRTree) were constrained (full model specifi-

cations are highlighted in Section 3.2). We compared these models on the basis of AIC and BIC

model fit statistics (Table 1). The fully estimated IRTree model fit the data best, supporting the

inclusion of a latent trait for problem-skipping in the estimation of student ability.

The fully estimated IRTtree model had a fixed intercept of −1.85 (p < .001). This translates

to a baseline probability of making an incorrect response of approximately 13.6%. Crucially, the

correlation between the propensity to problem-skip (node 1) and give an incorrect response (node

2) was 0.44: students that were more likely to problem-skip were more likely to make erroneous

responses. Although this correlation is positive, it is not 1 (which is the assumption under the

unidimensional model). Similarly, the correlation between the item skipping threshold and item

difficulty was 0.77. That is, items that were more likely to be skipped were more likely to be

estimated as difficult. The correlations between nodes for items and users is visualized in Figure 7.
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Model Random
Parameters AIC BIC cor(θ(1), θ(2)) cor(β(1), β(2))

Fully estimated IRTree θp, θi, βp, βi 1559132 1559220 0.44 0.77
Item-constrained IRTree θp, βp 1574386 1574449 0.37 -
User-constrained IRTree θi, βi 1591531 1591594 - 0.72
Fully constrained IRTree - 1619044 1619081 - -

Table 1: Model fit statistics and latent correlation estimates for the four fitted models.

4.3 Differential Patterns of Problem-Skipping Behavior

Apart from indicating the average relationship between individual propensities to problem-skip

and give an incorrect response, the scatter plot of user estimates in Figure 7 reveals the spread of

data around this relationship. From this, it could be of particular interest to look closer at the play

behavior of students that either conform to or deviate from the average pattern of problem-skipping

and accuracy. Exploring individual patterns in problem-skipping could reveal further insights and

generate new hypotheses about individual differences in interacting with online learning systems.

To explore this, we randomly selected users from 4 sets of criteria: (1) Low accuracy and high

skipping rate (upper right corner of the scatter plot); (2) High accuracy and high skipping rate

(lower right corner of the scatter plot); (3) High accuracy and low skipping rate (lower left corner of

the scatter plot); (4) Low accuracy and low skipping rate (upper left corner of the scatter plot). We

visualized their interactions with items in the Series game by plotting their response type (correct,

incorrect, question mark) for each item across time, against their response time (Figure 8). This

allows us to look at patterns in response types across time as well as whether responses were

fast or slow and how this fluctuates.

This exploration revealed some interesting patterns. For example, because item ratings cannot

improve with a question mark response (see Figure 3), users with a high ability should, in theory,

not resort to using the question mark response at a high rate. When taking a closer look at these

users (users C and D in Figure 8), they seem to be resorting to a different strategy compared to

the other sampled users: long sequences of question-mark responding to avoid giving an answer,

combined with sequences of attempting the item wherein the answer is mostly correct. In fact,

the majority of users within this region of average skipping and ability showed such sequences,

whereas the majority of users outside this region did not.
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5 Discussion

Accurate educational assessment demands accurate measurement models. We compared a uni-

dimensional IRT model, which assumes that problem-skipping does not influence student abil-

ity differently from accuracy, to a multidimensional IRTree model, which explicitly accounts for

differences in propensity to skip an item. We found evidence that problem-skipping and abil-

ity are distinguishable processes, and that those who skip more items tend to be estimated

with a lower ability. As such, IRT models aiming to estimate student ability need to account for

problem-skipping. These findings extend previous work on response scale- and achievement test

data—demonstrating that ignoring skipped items may lead to bias in the measurement of latent

traits [18, 31, 19, 29, 11]—to online learning platforms. Many online learning platforms include an

option to delay or omit an actual response, such as the option to skip the problem, request a hint,

or another way of seeking help. These findings are therefore relevant for educators, developers,

and researchers looking to estimate student ability with these tools.

There are several different ways to improve educational assessment by accounting for problem-

skipping. The first, and simplest, option, is to measure both latent traits after the data have come

in, and account for potential differences in ability and propensity to skip an item. The second

option is to incorporate a latent trait measurement for problem-skipping into the learning algorithm.

Similarly to Klinkenberg et al. [23]’s solution of using Elo-estimates for “on the fly” measurement of

student ability, a second parameter relating to problem-skipping can be incorporated and updated

as data come in. In this way, tools such as teacher dashboards which visualize the learning

trajectories of students can reveal insights both into students’ ability ratings in the current moment,

as well as their skipping tendencies, and one can choose to intervene on either one of them.

Lastly, if problem-skipping is assumed to be undesirable behavior (indicating low effort, gaming

the system, etc.), one option is to alter the design of the learning platform or scoring model such

that this behavior is decreased. Savi et al. [35] successfully implemented an intervention aimed

at reducing effortless problem-skipping in Math Garden, by briefly delaying students’ access to a

problem-skipping option. Following the intervention, children increased the amount of items they

attempted, which is ultimately what is required for active learning of new problems.

One limitation to the current approach is that it may not encompass all types of behaviors
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that are important for distinguishing uncertainty from accuracy. Consider the case of one student,

similar to students C and D in Figure 8, who quickly skips items in very long sequences. It may

be that such a student is in an unmotivated state, trying to exert as little effort as possible. Thus,

the student answers only items of which they are certain, and quickly skips items of which they

are uncertain. In contrast, a student in a motivated state who aims to exert effort into the learning

process may be attempting as many items as they can, and for uncertain items take time to

think about the answer before resorting to problem skipping. The behavior of the unmotivated

student is one which educators may want to pinpoint and intervene on, while the behavior of the

motivated student is considered productive and should be encouraged. To model this, fast and

slow responses would need to be distinguished on top of distinguishing problem-skipping from

ability. Thus, the current IRTree model should be extended to include a node which encompasses

fast from slow response processes [7].

Similarly, many studies aimed at separating item omissions from ability in traditional educa-

tional contexts also distinguish between items that are skipped and items that are not reached

([14, 31, 11]). Not-reached items are typically defined as items that the student did not get to in

time before the deadline of the test. In our data, such items cannot be defined because whole

sessions do not have a time limit. However, they can be incorporated into the model in two ways.

First, individual items which are not responded to in time (i.e., the user has a time-out response)

can be modeled separately from ability. This would allow us to test whether the same mechanism

underlies ability and responding in time. Second, in Math Garden, a student can choose to end

a session before they have finished all 10 items. While the adaptive system should ensure that

all students play at a level that matches their ability, the IRTree model can be extended to check

whether users who quit a session prematurely have different ability estimates compared to users

who finish a full session. Huang [19] used an extension of an IRTree model to distinguish aberrant

from normal test-taking behavior, where aberrant behavior was classified by dropping out, skip-

ping items, or showing a gradual decline in exerted effort. Similarly, such a model can be applied

to online learning to detect differences in motivational states between students. Altogether, the

IRTree framework has proven to be a useful method in estimating the latent correlation between

two different response types in online learning data, with interesting options for extensions.

Finally, it is important to note that this model assumes that the student undergoes a sequential
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decision process, i.e., first deciding whether to respond to a problem or skip it, and only then

deciding on the actual response (if not skipped). It is not certain that this is the true decision

process of the student. Future work would benefit from comparing different modeling frameworks

aimed at deciphering the response process of students in an educational context. For example,

Race Models [15] assume that there is competition between two or multiple parallel processes, and

as enough evidence accumulates in support of one process, this process wins and determines

the subsequent decision. In the context of problem-skipping, such a model may be suitable for

detecting fine-grained processes such as individual differences in processing speed, especially

in the context of a speed accuracy trade-off [15, 12]. Alternative methods to model students’

decision-making processes include Bayesian Hierarchical Models [37, 25] and Markov Decision

Processes [24, 32]. The rich, granular data generated by online learning systems offer an ideal

opportunity to compare cognitive decision models, which usually require detailed and structured

data collected in lab experiments. Nevertheless, given that most educational measurement models

use IRT, IRTrees are an ideal candidate as they can be directly compared and offer estimates that

are easy to interpret in, e.g., teacher dashboards.

6 Conclusion

In a large-scale adaptive learning environment for Arithmetic practice, low-ability students were

more likely to skip problems. The measurement model accounting for this relationship performed

best in estimating student ability. Under a measurement model that assumes that problem-

skipping and accuracy are unrelated, student ability may be overestimated, leading adaptive sys-

tems to assign overly difficult items. This misalignment increases the likelihood of further problem-

skipping, reinforcing the bias in ability estimation. To prevent this, problem-skipping should be

measured separately from accuracy. Online learning environments that utilize problem-skipping

options should consider estimating and reporting latent traits for both the tendency to problem-skip

and give an accurate response, or intervene in the learning system such that problem-skipping is

reduced. Only with accurate measurement models can equity in learning analytics be realized.
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Question Mark

Error Correct

Figure 1: A binary decision tree (IRTree model) with 2 nodes reflecting the decision to respond or
not (Y1) and whether the response is correct or not (Y2).

Figure 2: A screenshot of the Math Garden game
Series. A student is asked to fill in the miss-
ing number in the sequence. They gain (correct
answer) or lose (incorrect answer) coins corre-
sponding to the remaining amount of time in sec-
onds (bottom right). A student can click the ques-
tion mark (middle right) to retrieve the answer to
the item and move on to the next.

Figure 3: Visualization of the explicit scoring rule
in Math Garden.

21



Figure 4: Proportion of question mark responses in the Series game, separated by grade and
difficulty level (easy = 90% correct; medium = 75% correct; hard = 60% correct). Ribbons around
the line denote the 95% confidence interval. Grade refers to the Dutch grade levels; age ranges
approximately between 4 and 12 years. QM = question mark.

Figure 5: The probability of each response type (correct, error, question mark) across reponse
times (seconds). Point size refers to the amount of observations at that data point. The vertical line
denotes the deadline to respond, at 20 seconds. The histogram displays the average distribution
of response times in the Series game.

Figure 6: The probability of answering with a question mark or giving an incorrect response, over
the first 100 items played in the Series game. Point size refers to the amount of observations at
that data point.
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Figure 7: Correlation between estimated nodes in the fully estimated IRTree model. The left graph
displays the correlation between the item skipping threshold (β(1)), and the item difficulty (β(2)).
The right-hand graph displays the correlation between the individual propensity to skip an item
(θ(1)), and the individual propensity to answer incorrectly (θ(2)). For both graphs, The scatter plot
denotes individual data points, and the regression line displays the best-fitting linear relationship
between the nodes. Density plots denote the distribution of each random parameter.
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Figure 8: This graph displays eight individual users extracted based on their estimated propensity
to skip and make an incorrect response (center graph). Users are displayed in a clockwise fashion
starting from the upper right corner (low accuracy, high skipping), to the upper left corner (low
accuracy, low skipping) of the scatter plot. Each graph plots each each individual’s response
sequence to items in the Series game. The position on the y axis reflects the response time to the
item. Colors denote the response type (correct, incorrect, question mark). While some users had
longer response sequences in the extracted data (users C and E), the x axis is limited to showing
the first 300 responses, to ease the visualization.
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