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Abstract

Large-scale personalized learning systems rely on accurate and fair student ability estima-

tions, yet common unidimensional models often neglect meta-cognitive processes. As such,

they can provide biased estimates that put a limit on accuracy and fairness. This study introduces

a multidimensional approach using the IRTree framework, which models problem-skipping as

a distinct latent trait alongside accuracy. Problem-skipping is a common meta-cognitive mani-

festation that can reflect self-regulation and strategic decision-making. Our results demonstrate

that problem-skipping reflects meaningful individual differences, with patterns of problem-

skipping varying in their impact on performance. Notably, while frequent problem-skipping

was associated with lower accuracy, it also revealed adaptive strategies for some learners. This

suggests that problem-skipping is signal, not noise. To ensure that learning analytic tools are

supported by accurate and fair measurement models, we suggest several ways to account for

problem-skipping when estimating student ability.

Keywords adaptive learning, learner performance modeling, problem-skipping, item response

tree, K-12 education, fairness
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1 Introduction

For the sake of better understanding and improving students’ processes during online learning,

educational data mining relies on measurement models that accurately and fairly assess student

ability. Measurement models underlying large-scale personalized learning systems are primarily

unidimensional, i.e., the primary observations driving the latent trait estimation are whether or not a

response was correct (here referred to as accuracy). However, many platforms offer response options

beyond simply giving the answer, such as requesting hints or skipping questions (here referred to

as problem-skipping). While such behaviors have been used in the past to predict performance,

the latent traits underlying problem-skipping remain unclear. This study explores whether skipped

responses represent a distinct cognitive process, separate from accuracy, in estimating learner

ability.

Deciding whether to skip a problem or not requires the student to self-assess their likelihood

of success and allocate their effort accordingly (Winne, 2017). This meta-cognitive process,

consisting of monitoring and regulation, is crucial for successful learning (Colantonio et al., 2024;

Fleur et al., 2021; Rabinowitz, 2017), particularly in online settings (Fidan & Koçak Usluel, 2024;

Kim et al., 2009; Shields et al., 2024; Zhao & Ye, 2020). The extent to which meta-cognitive

tools are used differs across learners, as a function of individual differences in, for example, prior

knowledge (Taub et al., 2014), motivation (Karlen, 2016; Sungur, 2007), and anxiety (Matthews

et al., 1999; Wells, 1995). Differential patterns in problem-skipping may also be induced by

avoidance strategies stemming from reduced effort or affective states, such as anxiety and boredom,

which influence engagement and self-regulation through their impact on motivation and perceived

control (Pekrun & Perry, 2013). Compounding this issue, students do not always know that they

need help (Aleven & Koedinger, 2000). If individual differences in the use of meta-cognitive

strategies are ignored, systemic patterns of problem-skipping behavior underlying such traits could

lead to confounds in ability estimates. By explicitly modeling problem-skipping behavior, we

capture an important dimension of self-regulated learning that traditional unidimensional models

overlook.
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Research on problem-skipping in online learning is sparse, and existing studies reveal a

mixed portrait of its relationship with accuracy. On the one hand, results from a large-scale inter-

vention study demonstrated that limiting access to a problem-skipping option increased effortful

practice and improved learning in an online mathematics learning platform (Savi et al., 2018, 2023).

Hint-requests have also been found to correlate negatively with pre- and post- mathematics test

scores, and positively with mathematical errors during online learning (Norum et al., 2024). These

studies point to a negative relationship between problem-skipping and accuracy. On the other hand,

in the same study (Norum et al., 2024), the authors found evidence for individual differences in

the extent to which the hint-request option was used, and highlighted that a proportion of students

which were identified to need the most help relied the least on help-seeking strategies. Similarly,

an eye-tracking study found that students with lower accuracy paid less attention to hints (Conati

et al., 2013). Further studies have found evidence for individual differences in hint-processing but

show that these individual differences are not related to learning gains (Goldin et al., 2012, 2013).

Further, studies aiming to classify online learning behavior as “off-task” or disengaged (Baker,

Corbett, & Koedinger, 2004; Baker, Corbett, Koedinger, & Wagner, 2004; Baker et al., 2005;

Beck, 2004) reveal a group of students who misuse response options such as skipping. These

findings suggest that problem-skipping behaviors may not be explained by student ability alone.

1.1 Unidimensional measurement models

Problem-skipping has previously been incorporated into ability assessment, largely within Bayesian

Knowledge Tracing (BKT) frameworks. Since its introduction (Corbett & Anderson, 1995), where

problem-skipping behavior is treated the same as an incorrect response, there have been several

extensions which treat problem-skipping differently. For example, the partial-credit model (Ostrow

et al., 2015; Wang & Heffernan, 2013; Wang et al., 2010), gives some, but not full, credit for

hint-seeking or multiple attempts to a problem. Other implementations include incorporating the

history of help-seeking to improve the prediction accuracy of guesses and slips (Baker et al., 2008)

or detecting affective states (Corrigan et al., 2015). A comprehensive overview of such proposed
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enhancements to the classical BKT model is provided by Šarić-Grgić et al. (2024).

Another commonly used measurement model for assessing student ability is Item Response

Theory (IRT). In this model, student ability is assessed based on the likelihood of a correct

response, given specific properties of the current test item, and the student’s current ability. In

this paper, we use extensions of the 1-Parameter Logistic Model (1PL; also referred to as the

Rasch Model (Rasch, 1993)) to account for hierarchical decision processes. In the 1PL model, the

probability that a student with ability 𝜃𝑝 answers item 𝑖 correctly is given by the function:

𝑃(𝑋𝑖 = 1 | 𝜃𝑝, 𝛽𝑖) =
1

1 + 𝑒−(𝜃𝑝−𝛽𝑖)
(1)

where 𝛽𝑖 is the difficulty parameter for item 𝑖, which represents at what ability level the student

has a 50% chance of responding to the item correctly. In BKT terms, the 𝜃 parameter (student

ability) represents the probability of moving from an unlearned to a learned state, and the 𝛽

parameter (item difficulty) represents an item-specific probability of moving from a learned state

back into an unlearned state. This bridge between IRT and BKT models of student ability has

been formalized by (Deonovic et al., 2018). Although the current paper deals with data obtained

under an IRT measurement model, results will be relevant for online learning systems utilizing a

BKT-framework.

Importantly, IRT and BKT models share the feature that ability is measured on a unidimen-

sional scale. Both measurement models thus assume that problem-skipping is driven by the same

latent trait as the accuracy of a response. Previous work has demonstrated that ignoring missing

responses in IRT approaches can lead to bias on person- and item-parameter estimates (Debeer

et al., 2017; Finch, 2008; Holman & Glas, 2005; Mislevy & Wu, 1996; Pohl et al., 2014). Similarly,

prediction accuracy was found to increase in BKT models when disengaged responses (including

long sequences of skipped problems) were excluded from the ability estimation (Gorgun & Bulut,

2022). These findings support the notion that problem-skipping might be indicative of a separate

meta-cognitive state which is not directly related to ability, and signal a need to test the assumption
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that problem-skipping and accuracy can be measured on the same dimension.

1.2 A multidimensional approach

Failure to account for individual differences in response patterns is problematic because it may bias

the validity of the trait measurement and other constructs to be estimated, particularly when the

response style is related to the trait to be measured. Therefore, a range of research is dedicated

to reliably identifying and controlling for response styles to produce ability estimates which are

as unbiased as possible. One established way is to model the response process as a hierarchical

decision tree, referred to as an IRTree model (De Boeck & Partchev, 2012), where the content and

the response format of the item are both assumed to contribute to the observed response (Böckenholt,

2012; De Boeck & Partchev, 2012; Thissen-Roe & Thissen, 2013).

IRTree models can be used to model skipped responses in an educational context. In

specific, the model assumes a two-stage process where, first, the item is responded to or not, and

second, the item is responded to correctly or incorrectly. This process can be visualized as a

tree-branching model with two nodes (Figure 1), and the response of person 𝑝 on item 𝑖 can be

coded as two binary variables, 𝑌 (1) and 𝑌 (2) , where

𝑌 (1) =


1 if the person attempts item 𝑖

0 otherwise
(2)

𝑌 (2) =


1 if the person solves item 𝑖 correctly,

0 otherwise
(3)

The tree model is a multidimensional IRT model, where the probability of the response of

person 𝑝 on item 𝑖 being in category 𝑚 can be formulated as:
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𝜋(𝑥𝑝𝑖 = 𝑚 | 𝜃𝑝, 𝛽𝑖) =
𝑁∏
𝑛=1

[(
1

1 + 𝑒−(𝜃
(𝑛)
𝑝 −𝛽 (𝑛)

𝑖
)

) 𝑡𝑚𝑛
]𝑞𝑚𝑛

(4)

Each node in the tree is modeled with a 1PL model. Depending on where you are in the tree,

the probability is computed as the product across all internal nodes involved in the respondent’s path

through the tree, leading to a specific response category. The terms 𝑡𝑚𝑛 and 𝑞𝑚𝑛 decide whether a

node will contribute to the probability of category𝑚, in our case question-mark, incorrect or correct.

𝑡𝑚𝑛 determines whether an internal node 𝑛 is relevant for the probability calculation of response

category𝑚. It equals 1 if the node is relevant to category𝑚 (i.e., contributes to the response), and 0

otherwise. 𝑞𝑚𝑛 determines whether the node 𝑛 is active for the probability calculation of category

𝑚). When 𝑞𝑚𝑛 = 1, the node will actively contribute to the probability of category 𝑚, and when

𝑞𝑚𝑛 = 0, the node will be ignored for that category.

For example, consider a student who does not skip item 𝑖 (𝑌 (1) = 1), and then responds

correctly (𝑌 (2) = 1): at node 1, their probability of attempting the item (not skipping) is modeled

as a 1PL model (equation 1), and at node 2, their probability of correctly answering item 𝑖 follows a

second 1PL model (equation 1). The final response depends on successfully moving through both

nodes, so the overall probability of providing a correct answer, 𝑃(𝑌 (1) = 1, 𝑌 (2) = 1), is the product

of these two probabilities. At both nodes, 𝑡𝑚𝑛 and 𝑞𝑚𝑛 are both equal to 1, as they are relevant

and active for the final response category. Inversely, for a student who does skip the problem (i.e.,

𝑌 (1) = 0), node 1 is relevant (𝑡𝑚1 = 1; 𝑞𝑚1 = 1) but node 2 is not (𝑡𝑚2 = 0; 𝑞𝑚2 = 0). Thus, the

overall response probability is only the probability of skipping (𝑃(𝑌 (1) = 0)), modeled by a 1PL

model, and they do not proceed further in the tree.

The main advantage with this modeling approach is that the unidimensionality of the

decision process can be formally tested (De Boeck & Partchev, 2012). The two-node branching

model depicted in Figure 1 gives rise to two latent traits on the person and item side respectively:

1. node 1: 𝜃1
𝑝 (individual propensity to skip an item) and 𝛽1

𝑖
(propensity for item to be skipped),

and
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Question Mark

Error Correct

Figure 1: A binary decision tree (IRTree model) with 2 nodes reflecting the decision to respond or
not (𝑌1) and whether the response is correct or not (𝑌2).

2. node 2: 𝜃2
𝑝 (individual ability) and 𝛽2

𝑖
(item difficulty).

Now, the correlation between 𝜃1 and 𝜃2, and 𝛽1 and 𝛽2 can be calculated. That is, how much

do skipped responses depend on respondents or items, respectively? The unidimensional model

assumes that these correlations are negligible, i.e., for individuals, problem-skipping and accuracy

are the same, and the likelihood for an item to be skipped is equal to its estimated difficulty. This

assumption is tested by comparing the unidimensional to the multidimensional (IRTree) model.

Previous work utilizing IRTree models has found support for problem-skipping and accu-

racy as distinct processes in educational assessment data obtained from traditional pen-and-paper

tests (Debeer et al., 2017; Holman & Glas, 2005; Huang, 2020; Okumura, 2014; Pohl et al., 2014).

A simulation study found that a 1PL model results in bias in person- and item-parameters when

data is missing not at random, and that modeling the missingness mechanism with an IRTree model

significantly reduces this bias (Debeer et al., 2017). This was especially the case for students

who skip many responses. Empirical studies on PISA reading proficiency tests in Argentina (De-

beer et al., 2017) and Japan (Okumura, 2014), and reading and mathematical competence tests in

German fifth grade students students’ (Pohl et al., 2014), found that performance was negatively

related to their skipping propensity, and modeling reading proficiency with a IRTree vs. 1PL model

resulted in systematic differences in parameter estimation. The tree model was the best fit to the
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data, highlighting that missing responses in educational achievement data should not be ignored.

Additionally, IRTrees have been successfully applied to online learning data by accounting for the

speed-accuracy trade off in ability estimation (Coomans et al., 2016; Hofman et al., 2018), but this

approach did not take problem-skipping into account.

1.3 The current study

To date, a hierarchical decision model, allowing problem-skipping and accuracy to be modeled

as separate latent traits, has not been applied to large-scale adaptive learning data. Leveraging

behavioral patterns in the form of skipped responses can give insight into learner meta-cognition

and disengagement, and by providing a more accurate model of student ability can contribute to

more fairness in adaptive learning systems.

In this work, we estimate the relationship between problem-skipping and accuracy in a large-

scale adaptive educational software designed for primary school students to practice arithmetic.

We compare unidimensional (1PL) and multidimensional IRTree models with varying levels of

parameter constraints. These models allow us to examine whether responses to items are driven

by one latent trait (ability) or whether accuracy and problem-skipping represent distinct underlying

processes:

RQ1: Are problem-skipping and accuracy distinguishable processes in online learning?

Finding evidence for multidimensionality in ability assessment would have large impli-

cations for current educational measurement, which largely assume ability as a unidimensional

construct. In addition, fitting the IRTree model to response data allows us to examine the latent

correlations between nodes for items and students. This would help shed light on the currently

sparse findings concerning the relationship between accuracy and problem-skipping:

RQ2: Given that problem-skipping and accuracy are distinct, how are they related?
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2 Methods

2.1 Data

2.1.1 Online Learning Environment

We use data from an adaptive learning platform, [X] developed for primary school students to study

Math and Language 1. The platform currently consists of 65 games divided between environments

designed for Arithmetic practice (28 games), language learning (24 games), and for second-

language English learning (13 games). It is currently being used by over 450 000 children across

4300 schools. Depending on the difficulty of the task, the student can select one out of multiple

answer options, or fill in the number themselves. They can skip the item by clicking a question

mark. Then, the correct answer is shown and the student continues to the next item. While on the

platform, children take care of a virtual garden, where each game represents a different learning

domain, and the amount of practice is shown as the health of the plant.

In this work, we use data from a game called Series (Figure 2), wherein a student is asked

to fill in a missing number in a number sequence. This game is designed to test knowledge of

number sequences and relations. Each item that a student completes is given a score, determined

by an explicit scoring rule (Figure 3, Equation 7). This scoring rule is visualized to the student in

the form of coins: coins disappear for every second until the deadline (20 seconds). If the item is

answered correctly, the amount of coins remaining is awarded, whereas if the answer is incorrect,

the remaining amount of coins is lost. If the student skips the item or does not answer in time, no

change is made to their score.

Item difficulties and student abilities are estimated with the Elo Rating System (ERS).

When entering a learning game for the first time, a student is given a provisional ability rating 𝜃

(around the mean of the existing students within the same grade level). For each item that the

student responds to, 𝜃 is updated according to the weighted difference between the accuracy and
1In the current version of this manuscript, the name of the learning platform, and the country in which it is active,

is hidden for anonymity. In places where the final manuscript would refer to the platform, the name has been replaced
with [X].
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the expected accuracy on the item. Simultaneously, the rating of the item (𝛽) is updated:

𝜃𝑝 = 𝜃𝑝 + 𝐾𝑝 (𝑆𝑖𝑝 − 𝐸 (𝑆𝑖𝑝)), (5)

𝛽𝑖 = 𝛽𝑖 + 𝐾𝑖 (𝐸 (𝑆𝑖𝑝) − 𝑆𝑖𝑝). (6)

𝐾 is a scaling parameter which determines the weight that the difference between the observed

and expected score will have on the new ability estimate (for more information about the K-factor,

see Vermeiren et al. (2024)). The score of person 𝑝 following their response 𝑥 on item 𝑖 is dictated

by the difference between their response time 𝑡 and the deadline 𝑑, scaled by a discrimination

parameter 𝛼:

𝑆𝑖𝑝 = (2𝑥𝑖𝑝 − 1) (𝛼𝑖𝑑𝑖 − 𝛼𝑖𝑡𝑖𝑝). (7)

This is the formalization of the explicit scoring rule (Figure 3). It is a so-called high speed, high

stakes (HSHS) scoring rule (Maris & Van der Maas, 2012), which imposes a speed accuracy trade-

off in response behavior. The discrimination parameter, 𝛼𝑖, is equal to 1/𝑑. In this way, the model

maintains a constant discrimination value across items, and thus the calculated expected score is

equivalent to a 1PL IRT model:

𝐸 (𝑆𝑖𝑝) = 𝑎𝑖𝑑𝑖
𝑒2𝑎𝑖𝑑𝑖 (𝜃𝑝−𝛽𝑖) + 1
𝑒2𝑎𝑖𝑑𝑖 (𝜃𝑝−𝛽𝑖) − 1

− 1
𝜃𝑝 − 𝛽𝑖

. (8)

The ERS adaptively matches children to items according to their desired difficulty level, which

correspond to the probability of answering an item correctly. Difficulty levels are 60% (hard) 75%

(medium), or 90% (easy). Children play on the default medium setting unless they select otherwise.
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Figure 2: A screenshot of the Series game. A
student is asked to fill in the missing number in
the sequence. They gain (correct answer) or lose
(incorrect answer) coins corresponding to the re-
maining amount of time in seconds (bottom right).
A student can click the question mark (middle
right) to retrieve the answer to the item and move
on to the next.

Figure 3: Visualization of the explicit scoring
rule.

2.1.2 Inclusion criteria

To obtain data suitable for the IRT fitting procedure we selected a specific subset of data from the

Series game. First, we sampled data from the 2-year period between 01–09–2014 and 31–08–2016.

In recent years, changes have been made to the explicit scoring rule and the accessibility of the

question mark response in [X]. To ensure that these changes do not affect question mark behavior in

our analyses, we chose to look at data before this period of time. Lastly, the adaptive nature of the

online learning environment means that user ability parameters are continuously updated. This also

implies that for each user, there are periods of stable (learning is constant) and unstable (denoted

by jumps or shifts in learning) measurements of user ability. In order to control for possible effects

of learning on question mark usage, we only included data from periods where a user’s ability

remained relatively stable. We defined a stable period as one where the user’s ability rating stayed

close to their average rating. Specifically, a stable period was when the user’s ability rating did

not fluctuate more than 1 rating point above or below their average rating. The average rating for

each user was calculated by taking the 20% trimmed mean of all their ability ratings, to prevent

outliers from skewing the average. This criterion helps to minimize the influence of learning (or
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sudden jumps in ability) on question mark usage. Lastly, for proper identification of the models,

we selected only users who had skipped a minimum of 10 responses within their data period. The

length of each obtained period of learning data varied between users, with the mode around 1–2

weeks and the max up to 80 weeks.

On the item side, we selected items which had been played a minimum of 2000 times within

the selected data collection period. The final dataset consisted of 3795 respondents and 386 items.

2.2 Analyses

Comparing unidimensional and multidimensional linear response tree models allows to test whether

one underlying trait gives rise to the response categories on a test item (De Boeck & Partchev,

2012). Here, we compare a unidimensional (1PL) model to IRTree models with varying parameter

constraints to investigate whether responses to items in the Series game rely solely on one latent

person variable (ability) or whether accuracy is distinguishable from problem-skipping. Because

IRTree models are forms of generalized linear mixed models, the software package lme4 (Bates

et al., 2015) is used to estimate them. In all models, response is a binary variable denoting a

decision (left or right) in the response tree. Each response in the tree is modeled as a 1PL model.

The response tree is formulated such that node 1 represents the propensity to skip a problem, with

1 coded as a question mark response and 0 coded as an attempt to solve the item. Node 2 represents

the propensity to give an incorrect response (difficulty), with 1 coded as an incorrect response and

0 coded as a correct response. See Figure 1 and Equations 3 and 4 for the technical specifications of

the IRTree models. As such, each model is multilevel logistic regression which predicts response

as a function of users and items, with varying constraints on the item- and user- specific random

slopes:

1. Fully estimated IRTree: A multidimensional linear response tree where response is predicted

by a random node effect of items and a random node effect of users. This model captures

item- and user-specific variation across nodes.
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2. Item-constrained IRTree: A multidimensional linear response tree where response is pre-

dicted by a random intercept for items, and a random node effect of users, but without

modeling item-specific variation in nodes. This model captures variability in user behavior

across nodes, but not item thresholds.

3. User-constrained IRTree: A multidimensional linear response tree where response is pre-

dicted by a random intercept for users, and a random node effect of items, but without

modeling user-specific variation in nodes. This model captures variability in item thresholds

across nodes, but not user behavior.

4. Fully constrained IRTree: A unidimensional random item model for linear response trees,

where both item- and user-level effects are modeled with random intercepts, but without

accounting for variation across nodes. Item omission and correctness are collapsed into the

same response process, making this conceptually equivalent to a 1PL model.

3 Results

3.1 Description of Problem-Skipping

On average, children skipped approximately 6% of items in the Series game. Our exploration of

problem-skipping behavior revealed several trends. First, unsurprisingly, the usage of the question

mark feature was used more by children playing on the hard level (𝑀 = 0.086, 𝑆𝐷 = 0.281),

compared to easy (𝑀 = 0.043, 𝑆𝐷 = 0.203) and medium (𝑀 = 0.050, 𝑆𝐷 = 0.218) levels.

Additionally, there was a small increase in the overall use of question mark responses across grades

(0.061 (SD = 0.239) for Grade 3, 0.059 (SD = 0.237) for Grade 4, 0.062 (SD = 0.241) for Grade

5, 0.062 (SD = 0.241) for Grade 6, 0.063 (SD = 0.244) for Grade 7, and 0.067 (SD = 0.250) for

Grade 8.). However, when looking at average question mark usage across grades and difficulty

levels simultaneously, this relationship changed, with stable proportions of problem-skipping for

children playing on the hard level, and a decreasing proportion of problem-skipping across grades
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for easy and medium levels (Figure 4).

Figure 4: Proportion of question mark responses in the Series game, separated by grade and
difficulty level (easy = 90% correct; medium = 75% correct; hard = 60% correct). Ribbons around
the line denote the 95% confidence interval. Grade refers to the Dutch grade levels; age ranges
approximately between 4 and 12 years. QM = question mark.

We also found differences with regards to at what point in time the question mark feature

was used. Figure 5 displays the probability of each response type (correct, incorrect, question mark)

across response times. Problem-skipping was much more likely to occur in the first five seconds

upon the presentation of an item, and very unlikely to occur after five seconds, though with a small

increase in probability upon nearing the response deadline at 20 seconds. This is in stark contrast

to the probability of making a correct response, which quickly increased in the first five seconds

and slowly decreased leading up to the deadline. The probability of making an incorrect response

showed a small peak early in the response process, and slowly increased with increasing response

times. This figure also demonstrates that within the response times that are most common (where

the histogram bars are the highest), the probability of giving a question mark response is relatively

low.

Similarly, with increasing number of items played in the Series game, the probability of

skipping the problem decreased (Figure 6). This indicates that as users gain more understanding

of how to play the Series game, their problem-skipping decreases. This graph also demonstrates

the adaptivity of the system: as user ability estimates get more certain, the probability of making

an error and question mark response stabilizes.
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Figure 5: The probability of each response type
(correct, error, question mark) across response
times (seconds). Point size refers to the amount
of observations at that data point. The vertical
line denotes the deadline to respond, at 20 sec-
onds. The histogram displays the average dis-
tribution of response times in the Series game.

Figure 6: The probability of answering with a
question mark or giving an incorrect response,
over the first 100 items played in the Series
game. Point size refers to the amount of obser-
vations at that data point.

3.2 Models of Problem-Skipping

To test whether problem-skipping is distinguishable from accuracy in the Series game, we compared

a fully estimated multidimensional response tree to a unidimensional response tree, and two versions

of a multidimensional response tree where either random item estimates (item-constrained IRTree)

or random user estimates (user-constrained IRTree) were constrained (full model specifications are

highlighted in Section 2.2). We compared these models on the basis of AIC and BIC model fit

(Table 1). The fully estimated IRTree model fit the data best, supporting the inclusion of a latent

trait for problem-skipping in the estimation of student ability.

The fully estimated IRTtree model had a fixed intercept of−1.85 (𝑝 < .001). This translates

to a baseline probability of making an incorrect response of approximately 14.1%. Crucially, the

correlation between the propensity to problem-skip (node 1) and give an incorrect response (node

2) was 0.41: students that were more likely to problem-skip were moderately more likely to make

erroneous responses. Although this correlation is positive, it is not 1 (which is the assumption

under the unidimensional model). Similarly, the correlation between the item skipping threshold

and item difficulty was 0.77. That is, items that were more likely to be skipped were more likely
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Model Random Parameters AIC BIC RMSE cor(𝜃 (1) , 𝜃 (2) ) cor(𝛽 (1) , 𝛽 (2) )
1 𝜃𝑝, 𝜃𝑖 , 𝛽𝑝, 𝛽𝑖 1519007 1519095 0.3217 0.41 0.78
2 𝜃𝑝, 𝛽𝑝, 𝜃𝑖 = 𝛽𝑖 1533720 1533783 0.3234 0.35 -
3 𝜃𝑖 , 𝛽𝑖 , 𝜃𝑝 = 𝛽𝑝 1550148 1550211 0.3251 - 0.73
4 𝜃𝑖 = 𝛽𝑖 , 𝜃𝑝 = 𝛽𝑝 1566326 1566377 0.3268 - -

Table 1: Model fit statistics and latent correlation estimates for the four fitted models. RMSE =
root mean square error. RMSE values were computed via 𝑘-fold cross-validation, where 10% of
the data was held out in each fold, the model was fit on the remaining data, and RMSE on the model
predictions was calculated on the held-out set. The reported RMSE is the average across all folds.

to be estimated as difficult. The correlations between nodes for items and users is visualized in

Figure 7.

3.3 Individual Patterns in Problem-Skipping

In addition to indicating the average relationship between individual propensities to problem-skip

and give an incorrect response, the scatter plot of user estimates in Figure 7 reveals the spread of

data around this relationship. From this, it could be of particular interest to look closer at the play

behavior of students that either conform to or deviate from the average pattern of problem-skipping

and accuracy. Exploring individual patterns in problem-skipping could reveal further insights and

generate new hypotheses about individual differences in interacting with online learning systems.

To explore this, we randomly selected users from 4 sets of criteria: (1) Low accuracy and high

skipping rate (upper right corner of the scatter plot); (2) High accuracy and high skipping rate

(lower right corner of the scatter plot); (3) High accuracy and low skipping rate (lower left corner of

the scatter plot); (4) Low accuracy and low skipping rate (upper left corner of the scatter plot). We

visualized their interactions with items in the Series game by plotting their response type (correct,

incorrect, question mark) for each item across time, against their response time (Figure 8). This

allows us to look at patterns in response types across time as well as whether responses were fast

or slow and how this fluctuates.

This exploration revealed some interesting patterns. For example, because user ratings

cannot improve with a question mark response (see Figure 3), users with a high ability should, in
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Figure 7: Correlation between estimated nodes in the fully estimated IRTree model. The left graph
displays the correlation between the item skipping threshold (𝛽(1)), and the item difficulty (𝛽(2)).
The right-hand graph displays the correlation between the individual propensity to skip an item
(𝜃 (1)), and the individual propensity to answer incorrectly (𝜃 (2)). For both graphs, The scatter plot
denotes individual data points, and the regression line displays the best-fitting linear relationship
between the nodes. Density plots denote the distribution of each random parameter.

theory, not resort to using the question mark response at a high rate. When taking a closer look at

these users (users C and D in Figure 8), they seem to be resorting to a different strategy compared

to the other sampled users: long sequences of question-mark responding to avoid giving an answer,

combined with sequences of attempting the item wherein the answer is mostly correct. In fact,

the majority of users within this region of average skipping and accuracy showed such sequences,

whereas the majority of users outside this region did not.

4 Discussion

Accurate educational assessment demands accurate measurement models. In this study, we com-

pared a unidimensional IRT model, which assumes that problem-skipping does not influence student

ability differently from accuracy, to a multidimensional IRTree model, which explicitly accounts

for differences in propensity to skip an item. We found evidence that problem-skipping and ability
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Figure 8: Eight individual users extracted based on their estimated propensity to skip and make
an incorrect response (center graph). Individual interaction patterns are displayed in a clockwise
fashion starting from the upper right corner (low accuracy, high skipping), to the upper left corner
(low accuracy, low skipping) of the scatter plot. Each graph plots each each individual’s response
sequence to items in the Series game. The position on the y axis reflects the response time to the
item. Colors denote the response type (correct, incorrect, question mark). While some users had
longer response sequences in the extracted data (users C and E), the x axis is limited to showing
the first 300 responses, to ease the visualization.

are distinguishable processes, and as such, should not be measured on the same scale. Additionally,

we found a moderate, positive association between problem-skipping and accuracy, suggesting that

students with a high propensity to skip problems are somewhat more likely to be inaccurate when

they do give a response. However, the relative weakness of this correlation opposes the assumption

of unidimensional measurement models that these are perfectly correlated. Instead, it implies that

skipped responses carry information about both accuracy and other meta-cognitive or motivational

traits which affect responding. Failure to account for this will introduce bias to measurement and

limit the adaptivity of the system.

Our findings extend previous work on response scale- and achievement test data—demonstrating

that ignoring skipped items may lead to bias in the measurement of latent traits (Debeer et al., 2017;

Holman & Glas, 2005; Huang, 2020; Okumura, 2014; Pohl et al., 2014)—to online learning plat-

forms. They also shed some light on the mixed evidence concerning the relationship between

problem-skipping and accuracy, adding to the findings of Norum et al. (2024) that more problem-

skipping is associated with more errors, and the body of literature indicating individual differences
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in the use of alternative response options (Goldin et al., 2012, 2013; Norum et al., 2024). However,

the evidence that problem-skipping and accuracy are distinct and only moderately related may also

help to explain the discord in the literature. Specifically, the imperfect relationship suggests that

the observed association between problem-skipping and accuracy may be influenced by contextual

factors, such as the design of the learning environment or task difficulty, which give space for

different manifestations of meta-cognitive strategies and motivational states such as frustration or

boredom. Future work should aim to disentangle these contextual influences to better understand

the role of problem-skipping in learning and assessment.

Many adaptive learning platforms include a response option alternative to providing a direct

answer to an item, such as skipping or requesting a hint. These findings therefore have widespread

relevance for any adaptive learning system that aims to provide a fair estimate of student ability

while allowing flexibility in how students engage with items. A basic recommendation for such

systems is to, at a minimum, measure both latent traits once the data have been collected. The

IRTree model has proven a feasible method for this kind of post-hoc analysis, offering insights into

individual differences in both accuracy and problem-skipping. However, there are some limitations

to the use of IRTree models: they require large amounts of data for reliable estimates, making

them less suitable for students who interact with the learning platform less frequently. Moreover,

in the way that it is currently implemented, this method reflects past behavior rather than providing

real-time insights, a core feature in adaptive learning systems. In practice, the IRTree framework

could be used to incorporate a second parameter into the measurement model for real-time tracking

of problem-skipping. This would enable adaptive systems to monitor and act on these tendencies as

they emerge, for example via teacher dashboards. While this method is still data-intensive, it would

allow for dynamic tracking of both accuracy and problem-skipping, providing a fuller picture of

the learning process.

Despite their importance in revealing individual differences in how problem-skipping relates

to accuracy, post-hoc and real-time models reveal little about where these differences stem from.

This raises the question of whether different types of meta-cognitive strategies or states–such as
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boredom, frustration, gaming, or wheel-spinning–can be inferred from students’ response data.

Consider two students, one of whom quickly skips items in a very long sequence (students C

and D, Figure 8) to avoid effort, and another who is exerting effort into learning by attempting

as many items as they can, but skips the item as soon as they are uncertain to avoid the risk of

negative feedback. While both students would display high problem-skipping tendencies, they

bode for different intervention styles and may therefore want to be separated. To aid in this,

more information can be added to the tree model, such as a node to distinguish fast from slow

responses (Coomans et al., 2016; Hofman et al., 2018). An IRTree model can also be extended to

model different levels of disengagement, by, for example, explicitly accounting for drop-out (Huang,

2020).

Apart from merely measuring different cognitive and meta-cognitive states from observed

response data, adaptive systems can be designed to make these strategies directly observable. One

approach is to provide response options explicitly linked to meta-cognitive strategies, allowing

systems to infer and adapt to the strategies students employ. The feasibility of such an approach

would depend on the scale and flexibility of the learning system. For instance, in a system with

an exploratory style of learning, mapping response options to every possible strategy may prove

challenging. An alternative approach is to change the scoring rule in such a way that it constrains

students’ behaviors to a specific strategy. For example, in [X], the HSHS scoring rule (Maris & Van

der Maas, 2012) is implemented in such a way that students adhere to a speed-accuracy trade-off.

In a similar manner, a separate scoring rule for problem-skipping can be implemented such that it

has an appropriate trade-off with accuracy. A potential future research avenue is to investigate the

applicability and validity of such approaches for detecting different problem-skipping strategies.

Lastly, if problem-skipping is seen as undesirable behavior–such as indicating low effort

or gaming the system–the design of the system or scoring rule can be changed in such a way that

this behavior is decreased. Such an intervention has been successfully implemented, wherein the

ability to use the problem-skipping option was delayed upon the presentation of each item (Savi

et al., 2018). This led to an increase in the amount of items that students attempted, promoting
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effortful responding in the system. Such interventions highlight the potential of system design to

nudge students toward more productive behaviors.

A final note to consider is that this model assumes that the student undergoes a sequential

decision process, i.e., first deciding whether to respond to a problem or skip it, and only then

deciding on the actual response (if not skipped). It is not certain that this is the true decision process

of the student. In the future, it would be interesting to compare different modeling frameworks

aimed at deciphering the response process of students. For example, Race Models (Heathcote

& Matzke, 2022) assume that there is competition between two or multiple parallel processes,

and as enough evidence accumulates in support of one process, this process wins and determines

the subsequent decision. In the context of problem-skipping, such a model may be suitable for

detecting fine-grained processes such as individual differences in processing speed, especially

in the context of a speed accuracy trade-off (Evans et al., 2018; Heathcote & Matzke, 2022).

Alternative methods to model students’ decision-making processes include Bayesian Hierarchical

Models (Lee & Wagenmakers, 2014; Sawyer et al., 2018) and Markov Decision Processes (LaMar,

2018; Puterman, 1994). The rich, granular data generated by online learning systems offer an ideal

opportunity to compare cognitive decision models, which usually require detailed and structured

data collected in lab experiments. Nevertheless, the current results already indicate that there are

structural individual differences which, regardless of how the decision procedure is modeled, needs

to be accounted for.

5 Conclusion

In a large-scale adaptive learning environment for arithmetic practice, we found that accuracy and

problem-skipping are moderately related, but distinct traits. Under a measurement model which

doesn’t explicitly account for individual differences in problem-skipping, student ability estimates

could be biased towards children who respond differently to problem-skipping options. To prevent

this, online learning environments should consider estimating and reporting latent traits for both
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the tendency to problem-skip and give an accurate response, or intervene in the learning system

such that strategies can be inferred or problem-skipping is reduced. We have shown the feasibility

of applying the IRTree framework (De Boeck & Partchev, 2012) to model problem-skipping in

an adaptive learning platform. This approach has the potential to be extended to model other

meta-cognitive strategies, or model problem-skipping in domains apart from mathematics. Only

with accurate measurement models can equity in learning analytics be realized.

6 Data and Code Availability

The dataset used in the current study was collected under license of the third party company to which

the data belongs. Restrictions apply to the availability of these data, but can be made available from

the authors upon reasonable request and with permission of the company. Source code used to fit

and analyze the data is publicly available at https://anonymous.4open.science/r/qm-trees-10C5/.
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