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Why do students quit learning?

• Engagement is crucial for learning
• Online disengagement and drop-out is common
• In Math Garden, ~30% of sessions are exited prematurely 
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Sequential errors predict quitting

• Multi-State Survival Model 
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Sequential errors predict quitting
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Sequential errors predict quitting

• Sufficient motivation, grit, and self-regulation are important for 
successful engagement in learning (Skinner et al., 2020) 

• These are traits that vary considerably across children (Hill et al., 2016; 

Miller et al., 2012) 
• It is possible that sequential errors do not affect children equally. 

• RQ: Are there individual differences in the effect of sequential 
errors on quitting?
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Are there individual differences in the effect of 
sequential errors on quitting?

1. Zoom into quitting behavior by looking at variability in a large 
dataset for one domain (addition):
a) Estimate state transitions between persisting and quitting across 

individual-level variables
b) Look at error-induced quitting over time
c) Model the effect of sequential errors on quitting per individual 

2. Examine the reliability of these findings:
a) By validating them in a 50% testing dataset
b) By correlating them with a different domain (subtraction)
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Data

• Three years of responses 
(> 25 million) to addition 
items (2021-2023)
• Exploratory analyses on 

training data (50%; n = 
107000)
• Confirmatory analyses on a 

validation set (50%). 
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2-State Markov Model
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The effect of sequential errors on quitting differs across 
response time, play time, and difficulty level
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Are there individual differences in the effect of 
sequential errors on quitting?

1. Zoom into quitting behavior by looking at variability in a large 
dataset for one domain (addition):
a) Estimate state transitions between persisting and quitting across 

individual-level variables
b) Look at error-induced quitting over time
c) Model the effect of sequential errors on quitting per individual 

2. Examine the reliability of these findings:
a) By validating them in a 50% testing dataset
b) By correlating them with a different domain (subtraction)
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The effect of sequential errors on quitting differs across 
time
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Mixed effects logistic regression

• Probability to quit predicted by sequential errors 
• Random intercept and slope with covariates 

(rating and grade)
• Random intercept: allowing baseline quit rates to 

vary across users
• Random slope: allowing the effect of sequential 

errors on quitting to vary across users
• Controlling for ability (rating) and age (grade)

• Sequential error variable is continuous rather 
than categorical. 
• Addition (n = 3998) and subtraction (n = 1765) 

domains
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There is wide individual variability in error-induced quitting 
across addition and subtraction
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Three strikes and you’re out? 
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Three strikes and you’re out? Not always. 

• There are considerable individual differences in students’ vulnerability 
to errors. 
• These effects are stable across 2 math games. 

• Individual effects of errors in addition can be used to predict effects in 
subtraction. 

• Implications for tailored interventions. 
• One size does not fit all! 

• Challenges & Future directions
• Data selection 
• Mechanisms 
• A/B testing
• Error intervention
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Thank you! 
Contact: a.m.johansson2@uva.nl
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