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Model Random 
parameters AIC BIC

Fully Estimated IRTree 
multidimensional; response is predicted 
by a random node effect of items and a 

random node effect of users. 

1559132 1559220 0.44 0.77

Item-Constrained IRTree 
multidimensional; response is predicted 
by a random intercept for items, and a 

random node effect of users.
1574386 1574449 0.37 -

User-Constrained IRTree 
multidimensional; response is predicted 
by a random intercept for users, and a 

random node effect of items.
1591531 1591594 - 0.72

Fully Constrained IRTree 
unidimensional; both item- and user-

level effects are modeled with random 
intercepts. 

- 1619044 1619081 - -

θp, θi, βp, βi

θp, βp

θi, βi

cor(θ(1), θ(2)) cor(β(1), β(2))

Background & Methods. 
When using online learning platforms, students are often faced with the option to skip a problem.  
Traditional IRT models treat this behavior the same as incorrect responses, assuming that the tendency of 
a student to problem-skip is the same as their tendency to give an incorrect response1 

We used an item response tree model to test:  
1. Should problem-skipping be estimated separately from accuracy in online learning 

systems? 
2. How are item difficulties and user ability related to problem-skipping?  

Item difficulties and user ability estimates are best 
captured by an IRTree model separately accounting for 

problem-skipping and accuracy.  

Students who skip more have lower ability estimates, but 
are not always answering incorrectly. 

1. Little & Rubin (2019)
2. Klinkenberg et. al. (2011)
3. 3. De Boeck & Partchev (2012)
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Johansson, A.M., Savi, A.O., & Hofman, A.D. A problem that 

shouldn’t be skipped: Problem skipping limits the accuracy of 
ability estimates in online learning. (In review)

Problem-skipping and  
accuracy are distinct  
processes. 
Educational measurement models that rely on one latent ability 
measure may not be sufficient to capture learning.

Suggestions for learning analytics: 
• Measure both latent traits ad-hoc and report them. 
• On-the-fly problem-skipping estimation. Teacher 

dashboards can give insights on problem-skipping in 
real time.  

• Restrict problem-skipping behavior. 

Results. 
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Psychological Methods, University of Amsterdam

Problem Skipping Limits the Accuracy 
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